实对称正交矩阵?
1个回答
关注
展开全部
正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵和实对称矩阵的区别:
1、实对称矩阵的定义是:如果有n阶矩阵A,其各个元素都为实数,矩阵A的转置等于其本身,则称A为实对称矩阵。
2、正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A3、 转换矩阵是正交矩阵不代表被转换矩阵一定是实对称矩阵 反过来 实对称矩阵的相似对角化也不一定非要正交矩阵。扩展资料:正交矩阵的性质:1、方阵A正交的充要条件是A的行(列) 向量组是单位正交向量组。2、 方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。
3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量。
4、 A的列向量组也是正交单位向量组。实对称矩阵的性质:1.实对称矩阵特征值为实数。2..实对称矩阵一定有N个线性无关的特征向量。3..实对称矩阵不同特征值对应的特征向量相互正交。
咨询记录 · 回答于2021-05-07
实对称正交矩阵?
不好意思,这个我抢到了,可能不会打,我查查资料再说,我咨询一下同事。
关键在于对角化,不是这个矩阵
正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵和实对称矩阵的区别:1、实对称矩阵的定义是:如果有n阶矩阵A,其各个元素都为实数,矩阵A的转置等于其本身,则称A为实对称矩阵。2、正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A3、 转换矩阵是正交矩阵不代表被转换矩阵一定是实对称矩阵 反过来 实对称矩阵的相似对角化也不一定非要正交矩阵。扩展资料:正交矩阵的性质:1、方阵A正交的充要条件是A的行(列) 向量组是单位正交向量组。2、 方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量。4、 A的列向量组也是正交单位向量组。实对称矩阵的性质:1.实对称矩阵特征值为实数。2..实对称矩阵一定有N个线性无关的特征向量。3..实对称矩阵不同特征值对应的特征向量相互正交。