f(x)-a的绝对值≥f(x)的绝对值+A的绝对值

1个回答
展开全部
摘要 若A>0,用极限的定义可知 | f(x)|也满足他对极限的定义于是f(x)的绝对值极限为A,当A<0时证法相同。极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。对“变量”特有的概念理解还不十分清楚。对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。
咨询记录 · 回答于2022-02-05
f(x)-a的绝对值≥f(x)的绝对值+A的绝对值
若A>0,用极限的定义可知 | f(x)|也满足他对极限的定义于是f(x)的绝对值极限为A,当A<0时证法相同。极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。对“变量”特有的概念理解还不十分清楚。对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。
曲线形与直线形图像有着本质的差异,但在一定条件下也可相互转化,正如恩格斯所说:“直线和曲线在微分中终于等同起来了”。善于利用这种对立统一关系,是处理数学问题的重要手段之一。用直线构成的图形的面积易求。但是求曲线组成的图形的面积,用初等数学是不能准确地解决的。古人刘徽用“”圆内接多边形逼近圆面积”;人们用“变形为矩形的面积”来逼近曲边梯形的面积,等等,都是借助于极限的思想方法,从直线形来起步认识曲线形问题的解答
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消