五设+D:x^2+y^2Rx,+其中+R>0+求+I=f((k^
1个回答
关注
展开全部
亲你好很高兴为你服务注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8两边做二重积分得:∫∫f(x,y)dxdy 积分区域为:x²+(y-1/2)²≤1/4,x≥0,圆的极坐标方程为:r=sinθ,θ:0--->π/2=∫∫ {[1-(x^2+y^2)]^0.5-πa/8} dxdy=∫∫ [1-(x^2+y^2)]^0.5dxdy-πa/8∫ dxdy后一个被积函数为1,结果为区域面积,即半圆面积=∫∫ [1-(x^2+y^2)]^0.5dxdy-(πa/8)*(1/2)*π(1/2)²=∫∫ √(1-r²)*rdrdθ-(π²a/64)=∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)*rdr-(π²a/64)=1/2∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)d(r²)-(π²a/64)=-(1/2)(2/3)∫[0--->π/2] (1-r²)^(3/2) |[0--->sinθ]dθ-(π²a/64)=(1/3)∫[0--->π/2] (1-cos
咨询记录 · 回答于2022-12-18
五设+D:x^2+y^2Rx,+其中+R>0+求+I=f((k^
亲你好很高兴为你服务注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8两边做二重积分得:∫∫f(x,y)dxdy 积分区域为:x²+(y-1/2)²≤1/4,x≥0,圆的极坐标方程为:r=sinθ,θ:0--->π/2=∫∫ {[1-(x^2+y^2)]^0.5-πa/8} dxdy=∫∫ [1-(x^2+y^2)]^0.5dxdy-πa/8∫ dxdy后一个被积函数为1,结果为区域面积,即半圆面积=∫∫ [1-(x^2+y^2)]^0.5dxdy-(πa/8)*(1/2)*π(1/2)²=∫∫ √(1-r²)*rdrdθ-(π²a/64)=∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)*rdr-(π²a/64)=1/2∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)d(r²)-(π²a/64)=-(1/2)(2/3)∫[0--->π/2] (1-r²)^(3/2) |[0--->sinθ]dθ-(π²a/64)=(1/3)∫[0--->π/2] (1-cos
=(1/3)∫[0--->π/2] (1-cos³θ) dθ-(π²a/64)=(1/3)∫[0--->π/2] 1 dθ-(1/3)∫[0--->π/2] cos³θ dθ-(π²a/64)=(1/3)(π/2)-(1/3)∫[0--->π/2] cos²θ d(sinθ)-(π²a/64)=(1/3)(π/2)-(1/3)∫[0--->π/2] (1-sin²θ) d(sinθ)-(π²a/64)=(1/3)(π/2)-(1/3)(sinθ-(1/3)sin³θ)-(π²a/64) |[0--->π/2]=(π/6)-(1/3)(1-(1/3))-(π²a/64)=(π/6)-(2/9)-(π²a/64)因此:a=(π/6)-(2/9)-(π²a/64)解得:a=[(π/6)-(2/9)]/[1+(π²/64)]=(32/9)*(3π-4)/(64+π²)
好像题没拍清楚
嗯嗯
就是这个sin要写绝对值吗
是的