已知三角形abc+中,其角ABC所对边分别是abc+且满足bcosC+根号3bsinC等于a+c,若
1个回答
关注
展开全部
您好,很高兴为您解答:根据已知条件有:bcos(C) + √3bsin(C) = a + c将b=√3代入得:√3cos(C) + 3sin(C) = a + c将三角函数用e指数表示,有:Im(e^(iC)(√3 + 3i)) = a + c即:2Rsin(C) = a + c由正弦定理得:a/sin(A) = b/sin(B) = c/sin(C) = 2R因此,2R = a/sin(A) = (2bcos(C) + a - c) / sin(A)将已知条件代入得:2R = [(2√3cos(C) + a - c) / sin(A)] = [(2√3cos(C) + b^2 + c^2 - a^2) / 2sin(A)]根据余弦定理,有:cos(C) = (a^2 + b^2 - c^2) / (2ab) = (a^2 + 3 - c^2) / (2a√3)将cos(C)代入上式得:2R = [(4a^2 - 4ac + 4a√3) / (a√3 + √(a^2 - 3))] = [(4a - 4c + 4√3) / (√3 + √(a^2/3 - 1))]由于外接圆半径R为正数,因此2R也为正数,即分母和分子均为正数,因此可以去掉绝对值符号,得:2R = (4a - 4c + 4√3) / (√3 + √(a^2/3 - 1))将b=√3代入余弦定理,得:c^2 = a^2 + 3 - 2a√3cos(C) = a^2 + 3 - 2a(2a - c)/(2a√3) = (a^2 + 3 + ac) / √3将该式代入2R的表达式中,得:2R = (4a - 4c + 4√3) / (√3 + √(a^2/3 - (a^2 + 3 + ac)/3))化简得:2R = (4a - 4c + 4√3) / (√(3a^2 - ac - 9))将c^2代入得:2R = (4a - 4c + 4√3) / (√(2a^2 - a^2/3 - 9))化简得:2R = (4a - 4c + 4√3) / (√(5a^2/3 - 9))将c^2代入得:2R = (4a - 4c + 4√3) / (√(a^2/3 + 6))将b=√3代入余弦定理,得:a^2 = b^2 + c^2 - 2bcos(C)。
咨询记录 · 回答于2024-01-26
已知三瞎世角形abc+中,其角ABC所对边分别是abc+且满足bcosC+根银桐号3bsinC等锋神坦于a+c,若
亲亲,请确认您的题目是否正确
已知慧梁三角形abc+中,其角ABC所对边分别是abc+且满足bcosC+根号3bsinC等于a+c,若举袭b=根号前答运3,求三角形ABC的外接圆半径
根据已知野碧条件有:
bcos(C) + √3bsin(C) = a + c
将b=√3代入得:
√3cos(C) + 3sin(C) = a + c
将三角函数用e指数表示,有:
Im(e^(iC)(√3 + 3i)) = a + c
即:
2Rsin(C) = a + c
由正弦定理得:
a/sin(A) = b/sin(B) = c/sin(C) = 2R
因此,2R = a/sin(A) = (2bcos(C) + a - c) / sin(A)
将已知条件代入得:
2R = [(2√3cos(C) + a - c) / sin(A)] = [(2√3cos(C) + b^2 + c^2 - a^2) / 2sin(A)]
根据余弦定理,有枝脊答:
cos(C) = (a^2 + b^2 - c^2) / (2ab) = (a^2 + 3 - c^2) / (2a√3)
将cos(C)代入上式得:
2R = [(4a^2 - 4ac + 4a√3) / (a√3 + √(a^2 - 3))] = [(4a - 4c + 4√3) / (√3 + √(a^2/3 - 1))]
由于外接圆半径R为正数,因此2R也为正数,即分母和分子均为正数,因此可以去掉绝对值符号,得:
2R = (4a - 4c + 4√3) / (√3 + √(a^2/3 - (a^2 + 3 + ac)/3))
将b=√3代入余弦定理,得:
c^2 = a^2 + 3 - 2a√3cos(C) = a^2 + 3 - 2a(2a - c)/(2a√3) = (a^2 + 3 + ac) / √3
将该式代猛慧入2R的表达式中,得:
2R = (4a - 4c + 4√3) / (√3 + √(a^2/3 - (a^2 + 3 + ac)/3))化简得:
2R = (4a - 4c + 4√3) / (√(3a^2 - ac - 9))
将c^2代入得:
2R = (4a - 4c + 4√3) / (√(2a^2 - a^2/3 - 9))化简得:
2R = (4a - 4c + 4√3) / (√(5a^2/3 - 9))
将c^2代入得:
2R = (4a - 4c + 4√3) / (√(a^2/3 + 6))
将b=√3代入余弦定理,得:
a^2 = b^2 + c^2 - 2bcos(C