计算∫∫ (x^2+y^2-y )dxdy D是由y=x,y=1/2x,y=2围成的区域
1个回答
关注
展开全部
计算
∫∫ (x^2+y^2-y )dxdy
D是由y=x,y=1/2x,y=2围成的区域
是
∫∫ (x^2+y^2-y)dxdy
=∫[0--->2]dy∫[y/2--->y] (x^2+y^2-y)dx
=∫[0--->2] (1/3x^3+xy^2-xy) |[y/2--->y]dy
=∫[0--->2] (1/3y^3+y^2-y^2-(1/3)(y/2)^3-y^2/2+y^2/2) dy
=∫[0--->2] [(19/24)y^3-(1/2)y^2] dy
=[(19/96)y^4-(1/6)y^3] |[0--->2]
=11/6
咨询记录 · 回答于2024-01-12
计算∫∫ (x^2+y^2-y )dxdy D是由y=x,y=1/2x,y=2围成的区域
亲,您好,我是苏老师,服务了1万人,正在为您解答这一道题,您需要耐心等待五分钟左右时间,请不要结束咨询哦,答案马上为您揭晓,请不要着急哦!
计算
∫∫ (x^2+y^2-y )dxdy
D是由y=x,y=1/2x,y=2围成的区域
是
∫∫ (x^2+y^2-y)dxdy
=∫[0--->2]dy∫[y/2--->y] (x^2+y^2-y)dx
=∫[0--->2] (1/3x^3+xy^2-xy) |[y/2--->y]dy
=∫[0--->2] (1/3y^3+y^2-y^2-(1/3)(y/2)^3-y^2/2+y^2/2) dy
=∫[0--->2] [(19/24)y^3-(1/2)y^2] dy
=[(19/96)y^4-(1/6)y^3] |[0--->2]
=11/6
已赞过
评论
收起
你对这个回答的评价是?