4.用牛顿-莱布尼茨公式求定积分+_0^1(2x+5)dx
1个回答
关注
展开全部
咨询记录 · 回答于2022-11-08
4.用牛顿-莱布尼茨公式求定积分+_0^1(2x+5)dx
①原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx=∫(0到π)√(sinx-cosx)^2dx=∫(0到π/4)(cosx-sinx)dx+∫(π/4到π)(sinx-cosx)dx=(sinx+cosx)(x=π/4)-(sinx+cosx)(x=0)+(﹣cosx-sinx)(x=π)-(﹣cosx-sinx)(x=π/4)=2√2.②原积分=∫(-2到-1)x^4dx+∫(-1到1)dx+∫(1到3)x^4dx=(1/5×x^5)(x=-1)-(1/5×x^5)(x=-2)+x(x=1)-x(x=-1)+(1/5×x^5)(x=3)-(1/5×x^5)(x=1)=283/5.
本回答由富港检测技术(东莞)有限公司_提供