已知数列an前n项和Sn=4-an-1/2^(n-2).(1)求an+1与an的关系,(2)求an的通项
1个回答
展开全部
(1)a(n+1) = S(n+1)-Sn = an+ 1/2^(n-2) - a(n+1) - 1/2^(n-1)
= an - a(n+1) - 1/2^(n-1)
∴2a(n+1) = an - 1/2^(n-1) ------①
(2)①式虚枣稿两边同时乘以岩局2^(n-1) ,则得:
2^n a(n+1) = 2^(n-1) an -1
即数列{2^(n-1) an}是差孝以 2^(1-1) a1 = 1为首项,-1为公差的等差数列,
故 2^(n-1) an = 1-(n-1) = 2-n
∴an的通项:
an = (2-n)/2^(n-1)
= an - a(n+1) - 1/2^(n-1)
∴2a(n+1) = an - 1/2^(n-1) ------①
(2)①式虚枣稿两边同时乘以岩局2^(n-1) ,则得:
2^n a(n+1) = 2^(n-1) an -1
即数列{2^(n-1) an}是差孝以 2^(1-1) a1 = 1为首项,-1为公差的等差数列,
故 2^(n-1) an = 1-(n-1) = 2-n
∴an的通项:
an = (2-n)/2^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询