积分的求导公式
1个回答
展开全部
[∫(g(x),c)f(x)dx]'=f(g(x))*g'(x),g(x)为定积分的上限函数。
[∫(g(x),p(x))f(x)dx]'=f(g(x))*g'(x)-f(p(x))*p'(x),g(x)为积分上限函数,p(x)为积分下限函数。
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。其中a叫作积分下限,b叫作积分上限,区间[a, b]叫作积分区间。
定积分和不定积分的区别和联系:
不定积分本质上是给定一个函数,寻找这个函数的原函数的过程,在不考虑相差常数的意义下,不定积分可以看作是求导运算的逆运算。
定积分的定义是一个极限过程,给一个函数和一个区间,对区间进行无穷分割,再把每个区间上的函数值加起来的一个过程。可通过牛顿莱布尼茨公式联系起来。
求导:
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导得函数一定连续。不连续的函数一定不可导。