高中数学立体几何体不会
1个回答
关注
展开全部
f(18)= f(17) - f(16) = f(16) - f(15) - f(16) = f(15) - f(14) - f(15) - f(16) = f(14) - f(13) - f(14) - f(15) - f(16) = ... = f(1) - f(2) - f(3) - ... - f(15) - f(16) = 2 - f(2) - f(3) - ... - f(15) - f(16)由f(2x+1)为偶函数可得f(2) = f(3),f(4) = f(5),...,f(14) = f(15)。即:f(18)= 2 - 2f(3) - 2f(5) - ... - 2f(15) = 2 - 2(f(1)-f(2)) - 2(f(3)-f(4)) - ... - 2(f(13)-f(14)) = 2 - 2(2) + 2(f(2)) - 2(2f(2)) + 2(f(4)) - 2(2f(4)) + ... + 2(-2f(14)) = -22 + 4f(2) + 4f(4) + ... + 4f(14)设g(x) = f(2x),则g(1) = f(2),g(2) = f(4),...,g(7) = f(14)。根据f(x)=f(x+1)-f(x+2),有:g(1) = g(2) - g(3),g(2) = g(3) - g(4), ...,g(6) = g(7) - g(8);g(7)=g(8)-g(9)=0根据g(1)=f(2),即g(1)=g(2)-g(3)=f(2);根据g(2)=f(4),即g(1)+g(3)=g(2)-g(4)=f(4);...根据g(6)=f(14),即g(1)+g(3)+...+g(7) = g(2)-g(4)+...+g(8)=f(14)=0综上所述,有递推式:g(1)+g(3)+...+g(13)=0 ,即f(2)+f(4)+...+f(14)=0 故f(18) = -22 + 4f(2) + 4f(4) + ... + 4f(14) = -22 + 4(-f(2)-f(4)-...-f(14)) = 22 - 4(-f(2)-f(4)-...-f(14))
咨询记录 · 回答于2023-02-12
高中数学立体几何体不会
麻烦尽量过程详细点谢谢
你好, 可以把字写好一点吗 我有几个字没看出来写的是啥
那个就换一个吧不好打字
最后两题
第几题
f(18)= f(17) - f(16) = f(16) - f(15) - f(16) = f(15) - f(14) - f(15) - f(16) = f(14) - f(13) - f(14) - f(15) - f(16) = ... = f(1) - f(2) - f(3) - ... - f(15) - f(16) = 2 - f(2) - f(3) - ... - f(15) - f(16)由f(2x+1)为偶函数可得f(2) = f(3),f(4) = f(5),...,f(14) = f(15)。即:f(18)= 2 - 2f(3) - 2f(5) - ... - 2f(15) = 2 - 2(f(1)-f(2)) - 2(f(3)-f(4)) - ... - 2(f(13)-f(14)) = 2 - 2(2) + 2(f(2)) - 2(2f(2)) + 2(f(4)) - 2(2f(4)) + ... + 2(-2f(14)) = -22 + 4f(2) + 4f(4) + ... + 4f(14)设g(x) = f(2x),则g(1) = f(2),g(2) = f(4),...,g(7) = f(14)。根据f(x)=f(x+1)-f(x+2),有:g(1) = g(2) - g(3),g(2) = g(3) - g(4), ...,g(6) = g(7) - g(8);g(7)=g(8)-g(9)=0根据g(1)=f(2),即g(1)=g(2)-g(3)=f(2);根据g(2)=f(4),即g(1)+g(3)=g(2)-g(4)=f(4);...根据g(6)=f(14),即g(1)+g(3)+...+g(7) = g(2)-g(4)+...+g(8)=f(14)=0综上所述,有递推式:g(1)+g(3)+...+g(13)=0 ,即f(2)+f(4)+...+f(14)=0 故f(18) = -22 + 4f(2) + 4f(4) + ... + 4f(14) = -22 + 4(-f(2)-f(4)-...-f(14)) = 22 - 4(-f(2)-f(4)-...-f(14))
结果是多少
故f(18) = -22 + 4f(2) + 4f(4) + ... + 4f(14) = -22 + 4(-f(2)-f(4)-...-f(14)) = 22 - 4(-f(2)-f(4)-...-f(14)) = 22 + 4(f(2)+f(4)+...+f(14)) = 22 + 4 × 0 = 22