分部积分是什么意思

1个回答
故小为学长
2023-05-30 · 超过23用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:5006
展开全部
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。它是由微分的乘法法则{(u*v)'=u'*v+u*v'}和微积分基本定理{∫f(x)dx=f(x)}推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
分部积分的推导公式为:设函数,u=u(x) ,v=v(x)具有连续导数, 我们知道:(u·v) '=u'·v+u·v',通过移项可得:u·v'=(u·v) '-u'v对这个等式两边求不定积分,得:∫u·v'dx=u·v-∫u'·vdx,也可以表达为∫udv=u·v-∫u'·vdx。这就是分布积分法。
相关信息:  
积分的一个严格的数学定义由波恩哈德·黎曼给出。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消