如果相关性分析只有一个自变量还需要进行回归分析吗
1个回答
关注
展开全部
只有一个变量没必要继续回归,如果多变量情况下需要继续回归。
相关与回归在只有两个变量的情况下其实说的差不多是一回事。多变量情况下,可以用回归做预测,考虑调节变量,共线性问题,和多元回归一些其他功能,所以,继续做回归,还是两个变量,真的没必要,如果多变量情况下,还是可以考虑的。
因为pearson相关分析是一种简单的笼统的表示变量间相关性的数据,它不会考虑变量之间是否会存在有共线性或者相互影响。因此在能够做其他相关分析的时候,比如有回归分析、方差分析等,就没有必要再看pearson相关分析的结果,而是要以回归分析的数据为依据。
咨询记录 · 回答于2022-01-27
如果相关性分析只有一个自变量还需要进行回归分析吗
只有一个变量没必要继续回归,如果多变量情况下需要继续回归。相关与回归在只有两个变量的情况下其实说的差不多是一回事。多变量情况下,可以用回归做预测,考虑调节变量,共线性问题,和多元回归一些其他功能,所以,继续做回归,还是两个变量,真的没必要,如果多变量情况下,还是可以考虑的。因为pearson相关分析是一种简单的笼统的表示变量间相关性的数据,它不会考虑变量之间是否会存在有共线性或者相互影响。因此在能够做其他相关分析的时候,比如有回归分析、方差分析等,就没有必要再看pearson相关分析的结果,而是要以回归分析的数据为依据。
明白了
嗯嗯
ROC曲线是检验什么的呢,两个变量之间可以做ROC吗
有什么不懂的还可以继续问我哦
一般来说,对于两种诊断方法可以有成组比较法和配对比较法,成组比较法是两种诊断方法作用于不同受试者,配对比较法则是针对于同一受试者接受两种不同的诊断方法。ROC曲线适用于二分类别的反映效果或结果的变量。
两个变量间可以做ROC曲线
已赞过
评论
收起
你对这个回答的评价是?