普通方程怎么转化为参数方程?

普通方程怎么转化为参数方程?有没有类似通用方法,和经典方法,常用方法?... 普通方程怎么转化为参数方程?有没有类似通用方法,和经典方法,常用方法? 展开
 我来答
球探报告
2020-02-14 · TA获得超过2702个赞
知道小有建树答主
回答量:621
采纳率:91%
帮助的人:39万
展开全部

(1)写个例题就明白了,设方程组:

表示平面截圆所成曲线,如图:

曲线上的点A在xoy面上,移动到B点,角度由0变为t,根据三角函数,有√(y^2+x^2)=3cost,z=3sint(A点和B点到圆心的距离都是3)

因为y=x,解以上三个公式,得参数方程x=3/√2cost,y=3/√2cost,z=3sint

(2)理解以后,为了快速计算,可以这样,y=x代入x^2+y^2+z^2=9,有xoz面的投影方程2x^2+z^2=9,这样只有2个未知量,观察投影方程,取√2x=3cost,z=3sint,即x=3/√2cost,则z=3sint,从而可得该曲线的参数方程:x=3/√2cost,y=3/√2cost,z=3sint.

邵好0db
2018-09-23 · TA获得超过295个赞
知道答主
回答量:23
采纳率:100%
帮助的人:2.8万
展开全部
参数方程与普通方程的互化最基本的有以下四个公式:

1.cos²θ+sin²θ=1

2.ρ=x²+y²

3.ρcosθ=x

4.ρsinθ=y

其他公式:

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2]

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wldbyy
推荐于2017-09-29 · TA获得超过378个赞
知道答主
回答量:3
采纳率:0%
帮助的人:0
展开全部
例如圆x^2+y^2=4x

参数方程的表示:
先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint
其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t
∈[0,2π]

极坐标方程的表示:
由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ
这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.
角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π].
很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]

所以,圆x^2+y^2=4x的
参数方程是x=2+2cost,y=2sint,t∈[0,2π]
极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-02-01 · TA获得超过1万个赞
知道答主
回答量:11.8万
采纳率:10%
帮助的人:5890万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
励君豪5A

2019-12-22 · TA获得超过6536个赞
知道大有可为答主
回答量:4.9万
采纳率:63%
帮助的人:1759万
展开全部
放放怎怎样转为仓储房产?首先设计一下就可以了,因为它的设置方式区别的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式