展开全部
lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
根据定积分的定义。
对于∫1/(1+x^2) x∈(0,1)
=lim∑1/n*(1/(1+(i/n)^2)
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
则lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
=∫1/(1+x^2) x∈(0,1)
=arctanx x∈(0,1)
=π/4
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
根据定积分的定义。
对于∫1/(1+x^2) x∈(0,1)
=lim∑1/n*(1/(1+(i/n)^2)
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
则lim(n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2))
=lim1/n*[1/(1+1/n^2)+1/(1+(2/n)^2)+……+1/(1+(n/n)^2)]
=∫1/(1+x^2) x∈(0,1)
=arctanx x∈(0,1)
=π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询