用数学归纳法证明:1/n+1/(n+1)+1/(n+2)+…+1/n^2大于1

n=k+1代入后怎么算,不胜感激... n=k+1代入后怎么算,不胜感激 展开
oldpeter111
2009-06-07 · TA获得超过4.2万个赞
知道大有可为答主
回答量:9577
采纳率:76%
帮助的人:3943万
展开全部
设:1/k+1/(k+1)+1/(k+2)+…+1/k^2>1
n=k+1代入原式,得:
1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+1)^2
=(1/k+1/(k+1)+1/(k+2)+1/(k+3)+…+1/k^2)+(1/(k^2+1)+1/(k^2+2)+...+1/(k+1)^2)-1/k
>1+(1/(k^2+1)+1/(k^2+2)+...+1/(k+1)^2)-1/k
>1+(2k+1)(1/(k+1)^2)-1/k
=1+((k^2-k-1)/(k(k+1)^2))
=1+((k-(1/2))^2+(3/4))/(k(k+1)^2))
>1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式