如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作AM⊥BE,垂足M,AM交BD于点F

如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作AM⊥BE,垂足M,AM交BD于点F(1)求证OE=OF(2)如图2所示,若点E在... 如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作AM⊥BE,垂足M,AM交BD于点F
(1)求证OE=OF
(2)如图2所示,若点E在AC的延长线上,AM⊥EB的延长线于点M,交DB的延长线于点F,其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由
展开
异哦富程德7950
2012-06-07 · TA获得超过5.5万个赞
知道大有可为答主
回答量:3.5万
采纳率:0%
帮助的人:2373万
展开全部
)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.

(2)OE=OF成立.
证明:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
花依然灿烂123
2012-06-25
知道答主
回答量:21
采纳率:0%
帮助的人:3.3万
展开全部
(1)证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
(2)解:OE=OF成立.
证明:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bjlwwlg
2009-06-07 · TA获得超过175个赞
知道答主
回答量:107
采纳率:0%
帮助的人:49.4万
展开全部
1、∵∠AOF=90度,∠AMB=90度,∠AFO=∠BFM
∴∠OBE=∠OAF
∵OA=OB,∠OBE=∠OAF
∴OE=OF

2、、∵∠AOF=90度,∠AME=90度
∴∠AFO=∠AEM
∵OA=OB,∠AFO=∠AEM
∴OE=OF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shmillz
2009-06-07 · TA获得超过936个赞
知道小有建树答主
回答量:265
采纳率:0%
帮助的人:237万
展开全部
1、因为OB=OA ∠OEB+∠OFM=∠OFA+OFM=∠OFA+∠OAF=180度
所以∠OEB=∠OFA
又因为∠AOF=∠BOE=90度
所以根据角边角定理
推出三角形AOF≌三角形BOE
所以推出OE=OF
2、因为∠CBE+∠ABM=∠ABM+BAF=90度
所以∠CBE=BAF
又因为∠BCE=∠ABF=135度
BC=AB
所以三角形BCE≌三角形ABF
所以CE=BF
又因为OC=OB
所以OC+CE=OB+BF
即OE=OF
得证
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学小神通
2009-06-07
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式