已知定义在R上的函数f(x)=asinwx+bsinwx,(w>0,a>0,b>0)周期为π,f(x)<=2,f(π/4)=√3
2个回答
展开全部
f(x)=asinwx+bcoswx=√(a²+b²)sin(ωx+θ);θ=arctan(b/a)>0
周期为π=2π/ω;ω=2
f(x)≤2;√(a²+b²)=2
sin(π/2+θ)=√3/2;π/2+θ=π/2±π/6+2kπ
θ=π/6
f(x)=2sin(2x+π/6)
单调区间2x+π/6∈[(2k-1/2)π,(2k+1/2)π];x∈[(k-1/3)π,(k+1/6)π];
考虑x∈[-π/2,π/2]
xx∈[-π/3,π/6]
周期为π=2π/ω;ω=2
f(x)≤2;√(a²+b²)=2
sin(π/2+θ)=√3/2;π/2+θ=π/2±π/6+2kπ
θ=π/6
f(x)=2sin(2x+π/6)
单调区间2x+π/6∈[(2k-1/2)π,(2k+1/2)π];x∈[(k-1/3)π,(k+1/6)π];
考虑x∈[-π/2,π/2]
xx∈[-π/3,π/6]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询