一个简单数学建模题!狠请高手指点!感激不尽!

由于每一个三角形完全由其三个内角所决定,若以三角形的三个内角α,β,γ为指定,则所有三角形的集合可以记为U={(α,β,γ)|α≥β≥γ;α+β+γ=180}。要识别不同... 由于每一个三角形完全由其三个内角所决定,若以三角形的三个内角α,β,γ为指定,则所有三角形的集合可以记为U={(α,β,γ)|α≥β≥γ;α+β+γ=180}。要识别不同的三角形,可以风别构造不同的隶属函数。比如,若要判断一个三角形是否为等腰三角形,可构造隶属函数为
A(x)=A(α,β,γ)=[1-1/60min(α-β,β-γ)]^2
今给定几个三角形内角如下:
x1=(93,50,37) x2=(100,45,35)
x3=(125,38,17) x4=(80,56,44)
(1)试问哪一个三角形最有可能判别为等腰三角形?
(2)模仿等腰三角形隶属函数构造,分别在构造直角三角形,等边三角形,锐角三角形及钝角三角形的隶属函数并说明理由,在对上面给出的三角形进行判别。
展开
puream
2009-06-22 · TA获得超过987个赞
知道小有建树答主
回答量:298
采纳率:0%
帮助的人:0
展开全部
(1)对于真正的等腰三角形,A(x)=A(α,β,γ)=[1-1/60min(α-β,β-γ)]^2
的值应趋近于1,因此在这四个三角形中,最有可能被判定成等腰三角形应该使A最接近1的,算一下就知道是x2
(2)观察等腰三角形隶属函数的构造可以发现隶属函数有以下几个特征
值域是(0,1],且当α,β,γ满足条件时,函数值为1,在最极端的不满足条件下,值趋近于0.(在α->120,β=60,γ->0时)
因此可以构造如下:
直角三角形:A(x)=A(α,β,γ)=(1-|α-90|/180)^2
等边三角形: A(x)=A(α,β,γ)=(1-max(α-60,|β-60|,|γ-60|)/120)^2
锐角三角形: A(x)=A(α,β,γ)=(1-(α-90+|α-90|)/180)^2
钝角三角形: A(x)=A(α,β,γ)=(1-(-α+90+|α-90|)/180)^2
构造方式应该是不唯一的,但我感觉只要满足上面几个条件就可以了
判断按照(1)的方法判断一下就好了
例如x1,最接近的应是钝角三角形。当然如果精度要求不高还可以是直角三角形,我感觉这道题应该要求你判断成直角三角形。
x2应该是钝角三角形,而且也是距离等腰三角形最近的了,可以判断为等腰。
x3就是普通的钝角三角形,距离其他的都不近。
x4是锐角三角形,在这四个三角形中距离等边三角形是最近的了,虽然还不够近。
最后再说一下,我感觉这道题的背景有一些模糊判断的感觉。因为现实生活中得来的数据通常不会太准确,因此在判断的时候需要允许一定的误差。例如判断等边三角形,事实上不可能出现这样三个角严格相等的情况,因此判断的时候需要退一步,在一定的精度范围内判断是不是等边三角形。隶属函数的意义就在于此,越接近于1说明越接近正确。
my_ba1du
2009-06-18 · TA获得超过326个赞
知道小有建树答主
回答量:266
采纳率:0%
帮助的人:198万
展开全部
找老师
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式