求极坐标面积
不光要求答案要求给出解题步骤
答案是a^2(π-1)/4我觉得小圆画的不对,应该在x的负半轴还有个圆,你的图只是在θ属于0到π/2和3π/2到2π 展开
将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x²+y²),
sinθ=y/√(x²+y²). 第一条曲线转化为: √(x²+y²)=ax/√(x²+y²), x²+y²=ax
x²-ax+y²=0, (x-a/2)²-(a/2)²+y²=0 (x-a/2)²+y²=(a/2)²
此曲线是一个圆心在(a/2,0),半径为a/2的圆. 第二条曲线转化为:
√(x²+y²)=ax/√(x²+y²)+ay/√(x²+y²), x²+y²=ax+ay
(x-a/2)²-(a/2)²+(y-a/2)²-(a/2)²=0
(x-a/2)²+(y-a/2)²=2(a/2)²=(a/√2)²
此曲线是一个圆心在(a/2,a/2),半径为a/√2的圆.
这两条曲线所围图形公共部分是由第一个圆的上半圆和第二个圆下面一扇形区(正好为第二个圆面积的1/4)的弧面组成.
第一个圆的上半圆的面积是:π(a/2)²=πa²/4
第二个圆下面一扇形区(正好为其圆的1/4)的弧面的面积是:(1/4)π(a² /2)-a² /4=πa² /8-a² /4
此公共部分的总面积为:
π(a/2)² + πa² /8 - a² /4=(3π/8-1/4)a²