
∫∫∫(x+y+z)dxdydz 积分区域Ω是由四个平面:x=0、y=0、z=0和x+y+z=1围成的。 25
展开全部
Ω就是0<x<1,0<y<1-x,0<z<1-x-y
∫∫∫(x+y+z)dxdydz
= ∫(0,1)dx∫(0,1-x)dy∫(0,1-x-y)(x+y+z)dz
= ∫(0,1)dx∫(0,1-x)dy[x(1-x-y) + y(1-x-y) + (1-x-y)²/2]
= ∫(0,1)dx [(1-x)(1-x²)/2 - x(1-x)²/2 - (1-x)³/6]
= [(x^4)/24 - x²/4+ x/3]|(0,1)
= 1/8
∫∫∫(x+y+z)dxdydz
= ∫(0,1)dx∫(0,1-x)dy∫(0,1-x-y)(x+y+z)dz
= ∫(0,1)dx∫(0,1-x)dy[x(1-x-y) + y(1-x-y) + (1-x-y)²/2]
= ∫(0,1)dx [(1-x)(1-x²)/2 - x(1-x)²/2 - (1-x)³/6]
= [(x^4)/24 - x²/4+ x/3]|(0,1)
= 1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询