2009年河北省中考数学试卷答案

 我来答
百度网友43cb84972
2009-06-24 · TA获得超过694个赞
知道小有建树答主
回答量:888
采纳率:0%
帮助的人:488万
展开全部
2009年河北省初中毕业生升学文化课考试
数学试题参考答案
一、选择题
题 号 1 2 3 4 5 6 7 8 9 10 11 12
答 案 A A D C B B A B C C D C
二、填空题
13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20.
三、解答题
19.解:原式=
= .
当a = 2, 时,
原式 = 2.
【注:本题若直接代入求值,结果正确也相应给分】
20.解:(1)∵OE⊥CD于点E,CD=24,
∴ED = =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD =13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3) ;
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.
所以该商店应经销B品牌电视机.

22.解:(1)-3.
t =-6.
(2)分别将(-4,0)和(-3,-3)代入 ,得

解得
向上.
(3)-1(答案不唯一).
【注:写出t>-3且t≠0或其中任意一个数均给分】
23.解:实践应用
(1)2; . ; .
(2) .
拓展联想
(1)∵△ABC的周长为l,∴⊙O在三边上自转了 周.
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了 (周).
∴⊙O共自转了( +1)周.
(2) +1.
24.(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.
∴△FBM ≌ △MDH.
∴FM = MH.
∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM.
(2)证明:连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD‖BC,且MD = BC = BF;MB‖CD,
且MB=CD=DH.
∴四边形BCDM是平行四边形.
∴ ∠CBM =∠CDM.
又∵∠FBP =∠HDC,∴∠FBM =∠MDH.
∴△FBM ≌ △MDH.
∴FM = MH,
且∠MFB =∠HMD.
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形.
(3)是.
25.解:(1)0 ,3.
(2)由题意,得
, ∴ .
,∴ .
(3)由题意,得 .
整理,得 .
由题意,得
解得 x≤90.
【注:事实上,0≤x≤90 且x是6的整数倍】
由一次函数的性质可知,当x=90时,Q最小.
此时按三种裁法分别裁90张、75张、0张.
26.解:(1)1, ;
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴ .
由△AQF∽△ABC, ,
得 .∴ .
∴ ,
即 .
(3)能.
①当DE‖QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得 ,
即 . 解得 .
②如图5,当PQ‖BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得 ,
即 . 解得 .
(4) 或 .
【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
, .
由 ,得 ,解得 .
方法二、由 ,得 ,进而可得
,得 ,∴ .∴ .
②点P由A向C运动,DE经过点C,如图7.
, 】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式