【高一数学】平面向量的题目》》》》

AB为向量已知任意平面向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转d角得到向量AP=(xcosd-ysind,xsind+ycosd),叫做把点B绕点A逆时针... AB为向量

已知任意平面向量AB=(x,y),把向量AB绕其起点沿逆时针方向旋转d角得到向量AP=(xcosd-ysind,xsind+ycosd),叫做把点B绕点A逆时针方向旋转d角得到点P。

设平面内曲线C上的每一点绕坐标原点沿逆时针方向旋转π/4后得到的点的轨迹是曲线x^2-y^2=3,求原来曲线C的方程。

写出过程和答案,谢谢!
展开
居易然
2009-06-23 · 超过15用户采纳过TA的回答
知道答主
回答量:46
采纳率:0%
帮助的人:0
展开全部
设原曲线上任一点坐标为(x,y),因为旋转后坐标为(xcosd-ysind,xsind+ycosd),题中d=π/4,所以旋转后坐标为(x/根号2-y/根号2,x/根号2+y/根号2)。
把旋转后坐标代入旋转后方程,
得 原曲线C为 xy+3/2=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式