已知P为双曲线x2/16-y2/9=1右支上一点,F1、F2分别是左、右焦点,若|PF1|:|PF2|=3:2,求P点坐标!

谢谢!请高手解答!... 谢谢!请高手解答! 展开
zggdgzhzq
2009-06-24 · TA获得超过937个赞
知道小有建树答主
回答量:321
采纳率:0%
帮助的人:104万
展开全部
x2/16-y2/9=1 → 9x^2-16y^2=144
a=4 b=3
c=5
F1(-5,0) F2=(5,0)
设P点坐标为(x,y)
向量F1P=(x+5,0) 向量F2P=(x-5,0)
|F1P|=√[(x+5)^2 +y^2 ]
|F2P|=√[(x-5)^2 +y^2 ]
|PF1|:|PF2|=3:2
√[(x+5)^2 +y^2 ]=3/2 √[(x-5)^2 +y^2 ]
化简得:
x^2 +y^2 -26x+250=0
y^2 =(9x^2 -144)/16代入上式

算出x,再算出y
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式