1个回答
展开全部
证明 由拉格郎日定理可知,四阶群的元素的阶一定能整除群的阶4,故四阶群的元素的阶只能是1(幺元是唯一的1阶元),2,4,如果有一个元是4阶元,则该元自乘能生成群的所有元素,此时它是循环群,这个4阶元素是该循环群的生成元,否则如果除幺元外,所有的元均是2阶元,则此时该群正是4阶klein群.
参考资料: 如果您的回答是从其他地方引用,请表明出处
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
参考资料: 如果您的回答是从其他地方引用,请表明出处
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200