设函数f(x)xe^(kx)(k≠0)

设函数f(x)xe^(kx)(k≠0)(1)求曲线y=f(x)在点(0,f(0))处的切线方程(2)求函数f(x)的单调区间(3)若函数f(x)在区间(-1,1)的单调区... 设函数f(x)xe^(kx)(k≠0)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程
(2)求函数f(x)的单调区间
(3)若函数f(x)在区间(-1,1)的单调区间,求k的取值范围
展开
heanmen
2009-06-28
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
(1)∵f(x)=xe^(kx)(k≠0)
f(0)=0,
f′(x)=(1+kx)e^(kx),
f′(0)=1,
∴曲线y=f(x)在点(0,f(0))处的切线方程是 y=x。
(2)令f′(x)=0,得 x=-1/k,
∴函数f(x)的单调增区间是:(-∞,1/k),
函数f(x)的单调减区间是:(-1/k,+∞)。
(3)k的取值范围是: -1≤k≤1。
moyangld
2012-04-04
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
1、f'(x)=(1+kx)e^kx,f'(0)=1,f(0)=0
曲线y=f(x)在点(0,f(0))处的切线方程为y=x
2、由f'(x)=(1+kx)e^kx=0得x=-1/k(k≠0)
若k>0,则当x∈(-∞,-1/k)时,f'(x)<0,函数f(x)单调递减;
当x∈(-1/k,+∞)时,f'(x)>0,函数f(x)单调递增。
若k<0,则当x∈(-∞,-1/k)时,f'(x)>0,函数f(x)单调递增;
当x∈(-1/k,+∞)时,f'(x)<0,函数f(x)单调递减。
3、由2知,若k>0,则当且仅当-1/k≤-1,即k≤1时,函数f(x)在(-1,1)内单调递减;
若k<0,则当且仅当-1/k≥1,即k≥-1时,函数f(x)在(-1,1)内单调递增。
综上所述,可知:函数f(x)在区间(-1,1)内单调递增时,k的取值范围是[-1,0)∪(0,1]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式