求证:矩阵A的列向量组线性相关 <=> (AT A)的行列式为零

求证:m元向量组a1,a2,...,an线性相关的充要条件是det(ATA)=0,其中Amxn=[a1,a2,...,an]AT是trans(A)即A的转置一楼请具体描述... 求证:
m元向量组a1,a2,...,an线性相关 的充要条件是
det(AT A)=0,其中Amxn=[a1,a2,...,an]
AT是trans(A)即A的转置
一楼 请具体描述下 矩阵A^T的行帙=矩阵A的列帙<n <=>矩阵 A^T A 的帙<n 这一步
二楼 我主要是想要充分性的证明,也就是已知行列式为0求证线性相关,谢谢
如果有时间的话麻烦给下 从行列式为0求证线性相关的证明,毕竟分析的东西没法写到作业上呀……
展开
xiongxionghy
2009-06-29 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1753
采纳率:75%
帮助的人:2975万
展开全部
明白LZ的意思。是想问为什么R(A)=R(AT A),即A的秩等于AT A的秩是吧.

我来证明一下这个命题。

构造两个齐次线性方程组:
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(AT A)=n-基础解系中向量个数。
这个很好理解对吧,《线性代数》的基本内容。

现在来证明它们同解:
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0

其次证明(2)的解也是(1)的解:
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解。

于是R(A)=R(AT A)

就是这一步有点难,接下来的问题都是迎刃而解了。
ThyFhw
2009-06-29 · TA获得超过2.6万个赞
知道大有可为答主
回答量:4637
采纳率:50%
帮助的人:2394万
展开全部
矩阵A的列向量组线性相关
<=>矩阵A的列帙<n
<=>矩阵A^T的行帙=矩阵A的列帙<n
<=>矩阵 A^T A 的帙<n
<=>(A^T A)的行列式为零
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
prettyttcn
2009-06-29 · TA获得超过556个赞
知道小有建树答主
回答量:425
采纳率:0%
帮助的人:394万
展开全部
我觉得一楼挺好的啊,老师好像就这么讲过,行列式抄来抄去本来就没意思嘎,
实在想写,就写成行向量,列向量呗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
先生帅哥
2009-06-29 · TA获得超过151个赞
知道小有建树答主
回答量:188
采纳率:50%
帮助的人:75.3万
展开全部
赞同上面看法。
因为A^T A为n阶,它的秩小于等于minR{A^t,A},
又矩阵A的列向量组线性相关,所以A的秩小于n,
所以minR{A^t,A}小于n
所以A^T A的行列式为零。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式