用排列组合中的乘法原理
3个回答
展开全部
甲、乙两数的公约数一定是其最大公约数60的因子,因此本题相当于求60的因子有多少个。这是有公式的。一般的结论是:
如果自然数n的质因数分解为 n = p1^n1 * p2^n2 * ... * pk^nk,那么n的因子数为 (n1+1)(n2+1)...(nk+1)。
上式的证明就是用乘法原理。因为n的所有因子一定是如下形式:
p1^m1 * p2^m2 * ... * pk^mk,
其中m1,m2,...,mk的取值范围分别是
m1∈[0,n1], m2∈[0,n2], ..., mk∈[0,nk],
给定不同的m1,m2,...,mk就得到不同的因子,所以n的所有因子的个数为(n1+1)(n2+1)...(nk+1)。
例如对于60,它的质因数分解为60=2^2*3^1*5^1,所以60的因子数就是
(2+1)(1+1)(1+1)=12。
如果自然数n的质因数分解为 n = p1^n1 * p2^n2 * ... * pk^nk,那么n的因子数为 (n1+1)(n2+1)...(nk+1)。
上式的证明就是用乘法原理。因为n的所有因子一定是如下形式:
p1^m1 * p2^m2 * ... * pk^mk,
其中m1,m2,...,mk的取值范围分别是
m1∈[0,n1], m2∈[0,n2], ..., mk∈[0,nk],
给定不同的m1,m2,...,mk就得到不同的因子,所以n的所有因子的个数为(n1+1)(n2+1)...(nk+1)。
例如对于60,它的质因数分解为60=2^2*3^1*5^1,所以60的因子数就是
(2+1)(1+1)(1+1)=12。
展开全部
甲乙的公约数为甲乙最大公约数的约数,
60=2^2*3*5
其约数有(2+1)*(1+1)*(1+1)=12个
60=2^2*3*5
其约数有(2+1)*(1+1)*(1+1)=12个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,2,3,4,5,6,10,12,15,20,30,60
共有12个
共有12个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询