高数题(极限存在准则,两个重要极限)

设数列{xn}由下式给出:X0>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,。。。)证明limXn存在,求其值... 设数列{xn}由下式给出:X0>0,Xn+1=1/2(Xn+ 1/Xn) (n=1,2,。。。)证明lim Xn 存在,求其值 展开
robin_2006
推荐于2017-09-16 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8505万
展开全部
归纳法得xn≥1,n≥1时,{xn}有下界
X(n+1)-Xn=1/2×(1+Xn)(1-Xn)/Xn≤0,所以{Xn}单调减少
所以{Xn}有极限,设极限是a
在Xn+1=1/2(Xn+ 1/Xn)两边取极限,a=1/2(a+1/a),得a=1(由极限的保号性,a=-1舍去)
连七个名都这样
2009-07-01 · TA获得超过677个赞
知道答主
回答量:17
采纳率:0%
帮助的人:0
展开全部
先用单调有界原理证明极限存在,
因为Xn+1=1/2(Xn+1/Xn)< Xn,所以数列{ Xn }单调递减,
Xn>0,所以数列有下界。
由单调有界原理得极限存在。
设limXn=a,则limXn+1=a
对等式Xn+1=1/2(Xn+ 1/Xn)两边求极限得:a=1/2(a+ 1/a)
a=1/√2 i
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式