高中数学函数的图像和性质
设f(x)是R上的奇函数,且f(x+3)=-f(x),当0≤x≤1.5时,f(x)=x,则f(2003)=?...
设f(x)是R上的奇函数,且f(x+3)=-f(x),当0≤x≤1.5时,f(x)=x,则f(2003)=?
展开
展开全部
因为f(x+3)=-f(x),
所以f[(x+3)+3]=-f(x+3)=f(x),
即f(x+6)=f(x),
所以周期T=6.
又因为f(2003)=f(333*6+5)=f(5),
且f(5)=f(3+2)=-f(2).
因为-f(2)=-f(3-1)=-[-f(-1)]=f(-1),
且f(x)在R上是奇函数,
所以f(-1)=-f(1).
当0≤x≤1.5时,有f(x)=x,
所以-f(1)=-1.
即f(2003)=-1.
解答完毕!
O(∩_∩)O~希望对你有所帮助吧!
所以f[(x+3)+3]=-f(x+3)=f(x),
即f(x+6)=f(x),
所以周期T=6.
又因为f(2003)=f(333*6+5)=f(5),
且f(5)=f(3+2)=-f(2).
因为-f(2)=-f(3-1)=-[-f(-1)]=f(-1),
且f(x)在R上是奇函数,
所以f(-1)=-f(1).
当0≤x≤1.5时,有f(x)=x,
所以-f(1)=-1.
即f(2003)=-1.
解答完毕!
O(∩_∩)O~希望对你有所帮助吧!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询