已知函数fx=xlnx,gx=(-x^2+ax-3)e^x 15

已知函数fx=xlnx,gx=(-x^2+ax-3)e^x1当a=5时,求函数y=gx在x=1处的切线方程。2求fx在区间[t,t+2]上的最小值3若存在两不等实根x1.... 已知函数fx=xlnx,gx=(-x^2+ax-3)e^x
1当a=5时,求函数y=gx在x=1处的切线方程。
2求fx在区间[t,t+2]上的最小值
3若存在两不等实根x1.x2属于[1/e,e]使方程gx=2e^xfx成立,求a的取值范围。
展开
 我来答
忍落星空
2014-02-28 · TA获得超过417个赞
知道小有建树答主
回答量:559
采纳率:0%
帮助的人:328万
展开全部
(1) a=5时, g(x)=(-x^2+5x-3)e^x

g'(x)=(-2x+5)e^x+(-x^2+5x-3)e^x
=(-x^2+3x-3)e^x
g'(1)=(-1+3-3)e=-e 又g(1)=e

切线方程为;y-e=-e(x-1) 得 y=-ex+2e

(2) f'(x)=lnx+1
f(x)在(0,1/e)单调递减
f(x)在[1/e,+无穷)单调递增
若t>=1/e 则f的最小值为:f(t)=tlnt
则f的最大值为:f(t)=(t+2)ln(t+2)
若t<1/e 则f的最小值为:f(1/e)=-1/e
则f的最大值为:f(t)=(t+2)ln(t+2)

(3) g(x)=2e^xf(x)
(-x^2+ax-3)e^x=2e^x xlnx
-x^2+ax-3=2xlnx
可以画图分析知:
只需要-x^2+ax-3的最大值>2xlnx的最小值 且对称轴x=a/2>0即可。
a^2/4-3>-2/e
a>2根号(3+2/e)
追问
虽然错了,但是还是感谢你。
追答
第三题看错题目了,原来还有根在[1/e,e]之间
首先对称轴:x=a/2 满足1/e<a/2<=e
对称轴上的最大值满足: 3-a^2/4<=aln(a/2)

抛物线在x=e和x=1/e取到的值应该在曲线2xlnx的下方
-1/e^2+a/e-3<=-2/e
-e^2+ae-3<=2e
应该是这样的,不过比较复杂,步轴
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
mrshit123456
2015-02-16 · 超过26用户采纳过TA的回答
知道答主
回答量:75
采纳率:0%
帮助的人:39.9万
展开全部

有点儿乱,LZ不好意思了,凑合看好了

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式