高中数学例题5求解~

vdakulav
2014-04-23 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4474
采纳率:74%
帮助的人:1696万
展开全部
解:
显然,y>0,且各项(x-n)>0 ,其中n=1.....100
对原式两边去自然对数,则:
lny = ln(x-1)+ln(x-2)+ln(x-3)+....+ln(x-100)
对上式求x的导数:
d(lny)/dx = 1/(x-1) + 1/(x-2) + .....+ 1/(x-100)
y'/y = 1/(x-1) + 1/(x-2) + .....+ 1/(x-100)
因此:
y' = y[1/(x-1) + 1/(x-2) + .....+ 1/(x-100)]
=[(x-1)..(x-100)]·[1/(x-1) + 1/(x-2) + .....+ 1/(x-100)]
银燕燕舞新春L
2014-04-23 · 超过33用户采纳过TA的回答
知道答主
回答量:127
采纳率:50%
帮助的人:74.7万
展开全部
已知lnx对x求导为1/x
lny=ln(x-1)+ln(x-2)+....+ln(x-100)

lny对x求导(lny)'先对中间变量y求导,y再对x求导
即为y'/y
ln(x-1)+ln(x-2)+....+ln(x-100)对x求导
和的导数等于导数的和
[ln(x-1)+ln(x-2)+....+ln(x-100)]'=[ln(x-1)]'+[ln(x-2)]'+...+[ln(x-100)]'
分别把x-1,x-2,...,x-100看成中间变量,
先对中间变量求导,中间变量再对x求导
[ln(x-1)]'+[ln(x-2)]'+...+[ln(x-100)]'=1/(x-1)+1/(x-2)+...+1/(x-100)
所以
y'/y=1/(x-1)+1/(x-2)+...+1/(x-100)

y'=y[1/(x-1)+1/(x-2)+...+1/(x-100)]

y'=(x-1)(x-2)....(x-100)[1/(x-1)+1/(x-2)+...+1/(x-100)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式