最高次项是什么意思
多项式中,次数最高项就是最高次项。
多项式里,次数最高项的次数,就是这个多项式的次数,例如:2a+b是一次二项式;x2-3x+2是二次三项式;m3-3n3-2m+2n是三次四项式。
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式的最高次项
若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
起码有两个以上的字母,或者有两项{单项式}以上比如x²+y²,两个单项式相加的整式,它们的次数都是2,无所谓最高次数。比如x+x²+x³,很明显它们都是相同的字母的单项式组合的整式(整式涵盖单项式多项式),它们的最高次数的那一项就是x³,次数为3。不可能是4/5又没有x⁴/x⁵。
再比如x⁴+xy³+y⁶+x⁵y⁵z⁵m⁵,这个整式里含最多字母是最后一项,而含最高次数那个项(最高次项)的是y⁶,它的次数是6.再比如x²x³+x⁴最高次数是多少,要先化简,x²x³=xx·xxx总共5个x相乘为x⁵,式子变为x⁵+x⁴最后最高项的次数为5。
2024-04-08 广告
在多项式中,次数最高项的就是最高次项。
多项式中,每个单项式叫做多项式的一个项;每一个项的次数中最高的一个,就叫做这个多项式的次数。一个多项式是几次几项,就叫几次几项式。
“次”表示相乘的,如x是一次,xy、x的平方都是两次,xyz、x的立方是三次,以此类推……“项”表示相加的,如x是一项,x+y、x+xy、x+x^2都是二项,x+y+z、xy+xyz+x^3都是三项。
多项式的运算法则:
1、加法与乘法
有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合Fx{1,x2,…,xn},对于多项式的加法和乘法成为一个环,是具有单位元素的整环。
域上的多元多项式也有因式分解惟一性定理。
2、带余除法
若 f(x)和g(x)是F[x]中的两个多项式,且g(x)不等于0,则在F[x]中有唯一的多项式 q(x)和r(x),满足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次数小于g(x)的次数。
此时q(x) 称为g(x)除ƒ(x)的商式,r(x)称为余式。当g(x)=x-α时,则r(x)=ƒ(α)称为余元,式中的α是F的元素。此时带余除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),称为余元定理。g(x)是ƒ(x)的因式的充分必要条件是g(x)除ƒ(x)所得余式等于零。
如果g(x)是ƒ(x)的因式,那么也称g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特别地,x-α是ƒ(x)的因式的充分必要条件是ƒ(α)=0,这时称α是ƒ(x)的一个根。
多项式中,次数最高项就是最高次项。
多项式中,每个单项式叫做多项式的一个项;每一个项的次数中最高的一个,就叫做这个多项式的次数。一个多项式是几次几项,就叫几次几项式。
“次”表示相乘的,如x是一次,xy、x的平方都是两次,xyz、x的立方是三次,以此类推……“项”表示相加的,如x是一项,x+y、x+xy、x+x^2都是二项,x+y+z、xy+xyz+x^3都是三项。
扩展资料
多项式的运算法则
1、加法与乘法
有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合Fx{1,x2,…,xn},对于多项式的加法和乘法成为一个环,是具有单位元素的整环。
域上的多元多项式也有因式分解惟一性定理。
2、带余除法
若 f(x)和g(x)是F[x]中的两个多项式,且g(x)不等于0,则在F[x]中有唯一的多项式 q(x)和r(x),满足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次数小于g(x)的次数。
此时q(x) 称为g(x)除ƒ(x)的商式,r(x)称为余式。当g(x)=x-α时,则r(x)=ƒ(α)称为余元,式中的α是F的元素。此时带余除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),称为余元定理。g(x)是ƒ(x)的因式的充分必要条件是g(x)除ƒ(x)所得余式等于零。
如果g(x)是ƒ(x)的因式,那么也称g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特别地,x-α是ƒ(x)的因式的充分必要条件是ƒ(α)=0,这时称α是ƒ(x)的一个根。
2014-02-23
2014-02-23
项的次数 是一项中 所有字母的次数的和 如
59*(a^3)*(b^5) 此项的次数为3+5=8次
而其中59则是次项的系数
最高次项 几个想加(减)的式子中 它的次数最高
几个项想加(减)就是几项式 其中以最高次项的次数为这整个式子的次数
如:
(a^2)*b+5*(a^3)*(b^2)+56*a*(b^2)
其中 最高次项为5*(a^3)*(b^2)
最高次项系数:5
此为 5次3项式