高数,证明
证明:设f(x)=ln(2^x)-ln(x^2)=xln2-2lnx,故f(4)=0,由条件,得:f′(x)=ln2-2/x=2(ln2)/2-2/x=(ln4)/2-2...
证明:设f(x)=ln(2^x)-ln(x^2)=xln2-2lnx,故f(4)=0,由条件,得:
f′(x)= ln2-2/x=2(ln2)/2-2/x=(ln4)/2-2/x
又∵已知x>4
∴f′(x)= (ln4)/2-2/x > (lne)/2-2/4 =0
最后一步不能理解,(ln4)/2-2/x > (lne)/2-2/4 ,为什么要构造一个 (lne)/2-2/4 ,因为它=0? 展开
f′(x)= ln2-2/x=2(ln2)/2-2/x=(ln4)/2-2/x
又∵已知x>4
∴f′(x)= (ln4)/2-2/x > (lne)/2-2/4 =0
最后一步不能理解,(ln4)/2-2/x > (lne)/2-2/4 ,为什么要构造一个 (lne)/2-2/4 ,因为它=0? 展开
3个回答
展开全部
因为 f′(4)=(lne)/2-2/4=0,
且同时满足,x>4 和f′(x)在大于0时单增,
故而证明了f′(x)>f′(4)=0 ,即f′(x)>0,
我也不知道这个条件要问什么,您可以再写清楚一点哦
总之 因此原函数f(x)在x>4时单增!
且同时满足,x>4 和f′(x)在大于0时单增,
故而证明了f′(x)>f′(4)=0 ,即f′(x)>0,
我也不知道这个条件要问什么,您可以再写清楚一点哦
总之 因此原函数f(x)在x>4时单增!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是为了说明f'(x)>0,不过这不是必须的。
f′(x)= (ln4)/2-2/x > (ln4)/2-2/4 >0
这样写也可以。
f′(x)= (ln4)/2-2/x > (ln4)/2-2/4 >0
这样写也可以。
追问
也就是e,和4,都不是必需的,只要构造一个小于f′(x)= (ln4)/2-2/x的 但大于0的式子即可?。
追答
对的,这个题目因为x>4才用到了4。对别的题目,可根据具体情况找一个正的数字即可。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询