数学:定义新运算符号“*”的运算过程为a*b=[(1/2)a]-[(1/3)b],试解方程2*(2*x)=1*x.【“/”为分数线】
1个回答
展开全部
根据定义: 2*(2*x) = 2*[(1/2)×2 -(1/3)x]
= 2*[ 1 - (1/3)x]
= (1/2)×2 - (1/3)[1 - (1/3)x]
= 1 - 1/3 + (1/9)x = 2/3 + (1/9)x
1*x = (1/2)×1 -(1/3)x = 1/2 - (1/3)x
由于 2*(2*x) = 1*x
所以有: 2/3 + (1/9)x = 1/2 - (1/3)x
(1/9)x + (1/3)x = 1/2 - 2/3
(1/9 + 1/3)x = - 1/6
(4/9)x = - 1/6
x = -(1/6)/(4/9)
x = -3/8
= 2*[ 1 - (1/3)x]
= (1/2)×2 - (1/3)[1 - (1/3)x]
= 1 - 1/3 + (1/9)x = 2/3 + (1/9)x
1*x = (1/2)×1 -(1/3)x = 1/2 - (1/3)x
由于 2*(2*x) = 1*x
所以有: 2/3 + (1/9)x = 1/2 - (1/3)x
(1/9)x + (1/3)x = 1/2 - 2/3
(1/9 + 1/3)x = - 1/6
(4/9)x = - 1/6
x = -(1/6)/(4/9)
x = -3/8
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询