如图,将三角形纸片ABC沿DE折叠,使点A落在边BC上的点F处,且DE平行BC,下列结论中,一定正确的个数是
1、△BDF是等腰三角形。2、DF平行AC。3、四边形ADFE是菱形。4、∠BDF+∠FEC=2∠A...
1、△BDF是等腰三角形。2、DF平行AC。3、四边形ADFE是菱形。4、∠BDF+∠FEC=2∠A
展开
1个回答
展开全部
解:∵DE∥BC,
∴∠AED=∠C,∠DEF=∠CFE,
由折叠的性质可得:∠AED=∠DEF,AE=EF,
∴∠C=∠EFC,
∴EF=EC,
∴△FEC是等腰三角形,故A错误;
同理可证,△BDF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
但FE不一定是△ABC的中位线;
故B错误;
∵AD=DF,AE=EF,
∴不能证得四边形ADFE是菱形,
故C错误;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故D正确.
故选D.
∴∠AED=∠C,∠DEF=∠CFE,
由折叠的性质可得:∠AED=∠DEF,AE=EF,
∴∠C=∠EFC,
∴EF=EC,
∴△FEC是等腰三角形,故A错误;
同理可证,△BDF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
但FE不一定是△ABC的中位线;
故B错误;
∵AD=DF,AE=EF,
∴不能证得四边形ADFE是菱形,
故C错误;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故D正确.
故选D.
追问
D,老师批的是错的
追答
应该是D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询