
用放缩法证明6n/(n+1)(2n+1)<=1+1/4+1/9+……+1/n^2
展开全部
>=2时An=1/n^2<1/[(n+1/2)(n-1/2)]=1/(n-1/2)-1/(n+1/2),∴Sn=1+1/2^2+1/3^2+……+1/n^2<1+1/4+1/2.5-1/3.5+……+1/(n-1/2)-1/(n+1/2)<1.65-1/(n+1/2)<5/3.Sn=1+1/2^2+1/3^2+……+1/n^2>=5/4,6n/[(n+1)(2n+1)]<5/4,<==>24n<5(n+1)(2n+1)<==>10n^2-9n+5>0,△=9^2-4*10*5<0,上式成立,∴Sn>6n/[(n+1)(2n+1)].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询