哈哈,谢谢
2014-07-27
展开全部
证明:连接AC
∵AB∥CD
∴∠ACD=∠BAC
∵AB=BC
∴∠ACB=∠BAC
∴∠ACD=∠ACB
∵AD⊥DC,AE⊥BC
∴∠D=∠AEC=90°
∵AC=AC
∴{∠D=∠AEC,∠DCA=∠ACB,AC=AC
∴△ADC≌△AEC(AAS)
∴CD=CE
∵AB∥CD
∴∠ACD=∠BAC
∵AB=BC
∴∠ACB=∠BAC
∴∠ACD=∠ACB
∵AD⊥DC,AE⊥BC
∴∠D=∠AEC=90°
∵AC=AC
∴{∠D=∠AEC,∠DCA=∠ACB,AC=AC
∴△ADC≌△AEC(AAS)
∴CD=CE
追答
嘿嘿,采纳,谢谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询