已知三角形abc的内角为A,B,C,其对边分别为a.b.c,B为锐角
已知三角形abc的内角为A,B,C,其对边分别为a.b.c,B为锐角,向量m=(2sinB,-根号三),n=(cos2B,2COS²二分之一B),且m平行n。求...
已知三角形abc的内角为A,B,C,其对边分别为a.b.c,B为锐角,向量m=(2sinB,-根号三),n=(cos2B,2COS²二分之一B),且m平行n。求角B大小。如果b=2,求三角形ABC面积的最大值。
展开
展开全部
满意回答
向量m=(sinB,1-cosB),向量n=(2,0),
mn=2sinB,
|m|=√(sinB+(1-cosB) )=√(2-2 cosB)= √[2(1- cosB)]= √[22sin(B/2)]=2 sin(B/2).
|n|=2
所以Cosα=mn/(|m||n|)=2sinB/[4 sin(B/2)]= 4 sin(B/2)cos(B/2) /[4 sin(B/2)]= cos(B/2).
由已知:Cosα=1/2,
∴cos(B/2) =1/2,B/2 =π/3. B=2π/3.
由正弦定理得a/sinA=b/sinB=c/sinC=2R=2.
所以(a +c )/(sinA +sinC)=2
a +c=2(sinA +sinC)
∵B=2π/3. A +C=π/3.
∴a +c=2(sinA +sin(π/3-A))=2(sinA +√3/2cosA-1/2sinA)
=2(1/2sinA +√3/2cosA)=2sin (A+π/3)
因为0<A<π/3, π/3<A+π/3<2π/3.
所以√3/2<sin (A+π/3)≤1
a +c==2sin (A+π/3)∈(√3,2].
fnxnmn | 2010-12-03
56
4
向量m=(sinB,1-cosB),向量n=(2,0),
mn=2sinB,
|m|=√(sinB+(1-cosB) )=√(2-2 cosB)= √[2(1- cosB)]= √[22sin(B/2)]=2 sin(B/2).
|n|=2
所以Cosα=mn/(|m||n|)=2sinB/[4 sin(B/2)]= 4 sin(B/2)cos(B/2) /[4 sin(B/2)]= cos(B/2).
由已知:Cosα=1/2,
∴cos(B/2) =1/2,B/2 =π/3. B=2π/3.
由正弦定理得a/sinA=b/sinB=c/sinC=2R=2.
所以(a +c )/(sinA +sinC)=2
a +c=2(sinA +sinC)
∵B=2π/3. A +C=π/3.
∴a +c=2(sinA +sin(π/3-A))=2(sinA +√3/2cosA-1/2sinA)
=2(1/2sinA +√3/2cosA)=2sin (A+π/3)
因为0<A<π/3, π/3<A+π/3<2π/3.
所以√3/2<sin (A+π/3)≤1
a +c==2sin (A+π/3)∈(√3,2].
fnxnmn | 2010-12-03
56
4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询