
已知3sinα^2+2sinβ^2=1,3(sinα+cosα)^2-2(sinβ+cosβ)^2=1则cos2(α+β)=
展开全部
3(sinα)^2+2(sinβ)^2=1,
∴(3/2)(1-cos2α)+1-cos2β=1,
cos2β=(3/2)(1-cos2α),①
3(sinα+cosα)^2-2(sinβ+cosβ)^2=1
∴3(1+sin2α)-2(1+sin2β)=1,
∴sin2β=(3/2)sin2α,②
①^2+②^2,1=(9/4)(2-2cos2α),
解得cos2α=7/9,
∴cos2(α+β)=cos(2α+2β)
=(3/2)cos2α(1-cos2α)-(3/2)(sin2α)^2
=(3/2)cos2α-3/2
=7/6-9/6
=-1/3.
∴(3/2)(1-cos2α)+1-cos2β=1,
cos2β=(3/2)(1-cos2α),①
3(sinα+cosα)^2-2(sinβ+cosβ)^2=1
∴3(1+sin2α)-2(1+sin2β)=1,
∴sin2β=(3/2)sin2α,②
①^2+②^2,1=(9/4)(2-2cos2α),
解得cos2α=7/9,
∴cos2(α+β)=cos(2α+2β)
=(3/2)cos2α(1-cos2α)-(3/2)(sin2α)^2
=(3/2)cos2α-3/2
=7/6-9/6
=-1/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询