怎么学好高中数学?
初中数学一般般,难上高分,但其他科目还不错,属于成绩好的学生,可就是数学太偏了。我高中该肿么办?还有救吗?...
初中数学一般般,难上高分,但其他科目还不错,属于成绩好的学生,可就是数学太偏了。我高中该肿么办?还有救吗?
展开
14个回答
展开全部
高数学习方法谈
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 配合老师主动学习。 高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题
先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2
做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
主动复习总结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
积累资料随时整理。 要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
精挑慎选课外读物。 初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则不大相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事半功倍。
配合老师主动学习。 高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营。 高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,详细的安排好自己的零星时间,并及时作出合理的微量调整。
END
注意事项
我们在学习高中数学的时候,除了上课认真听老师讲解外,学习方法,学习习惯也很重要,只要学生认真努力,数学成绩提高是很容易的。
数学的学习过程中千万不要有心理包袱和顾虑,任何学科也是一样,是一个慢慢学习和积累的过程。但要记住的一点,这个过程我们是否能真正的学好初三数学课程(或者其他课程),除了以上的方法,我们最终的目的是:要养成一个良好的学习习惯,要培养出自己优质的学习兴趣,要掌握和形成一套自己的学习方法。
欢迎采纳
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 配合老师主动学习。 高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题
先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2
做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
主动复习总结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
积累资料随时整理。 要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
精挑慎选课外读物。 初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则不大相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事半功倍。
配合老师主动学习。 高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营。 高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,详细的安排好自己的零星时间,并及时作出合理的微量调整。
END
注意事项
我们在学习高中数学的时候,除了上课认真听老师讲解外,学习方法,学习习惯也很重要,只要学生认真努力,数学成绩提高是很容易的。
数学的学习过程中千万不要有心理包袱和顾虑,任何学科也是一样,是一个慢慢学习和积累的过程。但要记住的一点,这个过程我们是否能真正的学好初三数学课程(或者其他课程),除了以上的方法,我们最终的目的是:要养成一个良好的学习习惯,要培养出自己优质的学习兴趣,要掌握和形成一套自己的学习方法。
欢迎采纳
展开全部
首先,自我介绍一下,我是一名高三数学老师,通过多年的教学,我总结了如下几点,以帮助你学好数学课!具体如下:
课下要学会“三种复习”
(1)及时复习——每天课后,要通过阅读课本和整理笔记完成两项任务:
①深抠理论(概念、定理、公式、法则)。
②深抠例题。要做到
“知其然更知其所以然”,才能举三反一和举一反三。
(2)单元复习——每个单元学完后,要做单元复习,完成以下任务:
①整理、串联知识点,形成单元的理论系统。
②归纳单元理论的数学思想和数学方法,使理解达到更高的层面。
③筛选单元中的典型例题和习题,以利于进一步研究和以后的复习。通过单元复习,彻底解决周清问题。
(3)考前复习与考后总结。很多学生考前不会复习,只知道找题做,记题型。这样往往会使知识系统记忆不全、丢三落四,没有练过的不敢做,平时做过的题不一定做对。因此,考前的系统复习很重要。通过复习,使学生能发现知识之间的内在联系,掌握各种概念、原理的丰富内涵和本质,将分散的知识整合为系统知识,进而形成一种新的“自主型”知识结构。①把单元的理论系统及其内涵合上书从头到尾说一遍,说不上来时,打开书看一看,继续往下说,直到能全部说清楚;
②把单元复习整理过的中心课题、数学思想和方法照上面的办法也说一遍,这样重点突出,针对性强。
③把典型例题和习题分析一遍或者做一遍。
考试后要做总结,既要总结成功的经验,更要总结失分的原因,找出改进的方法,并把失分点记在“错题本”上,力争做到对失分点日后“不二错”。解决月清问题(不要求月考,但要求章节过关)。
祝你愉快
课下要学会“三种复习”
(1)及时复习——每天课后,要通过阅读课本和整理笔记完成两项任务:
①深抠理论(概念、定理、公式、法则)。
②深抠例题。要做到
“知其然更知其所以然”,才能举三反一和举一反三。
(2)单元复习——每个单元学完后,要做单元复习,完成以下任务:
①整理、串联知识点,形成单元的理论系统。
②归纳单元理论的数学思想和数学方法,使理解达到更高的层面。
③筛选单元中的典型例题和习题,以利于进一步研究和以后的复习。通过单元复习,彻底解决周清问题。
(3)考前复习与考后总结。很多学生考前不会复习,只知道找题做,记题型。这样往往会使知识系统记忆不全、丢三落四,没有练过的不敢做,平时做过的题不一定做对。因此,考前的系统复习很重要。通过复习,使学生能发现知识之间的内在联系,掌握各种概念、原理的丰富内涵和本质,将分散的知识整合为系统知识,进而形成一种新的“自主型”知识结构。①把单元的理论系统及其内涵合上书从头到尾说一遍,说不上来时,打开书看一看,继续往下说,直到能全部说清楚;
②把单元复习整理过的中心课题、数学思想和方法照上面的办法也说一遍,这样重点突出,针对性强。
③把典型例题和习题分析一遍或者做一遍。
考试后要做总结,既要总结成功的经验,更要总结失分的原因,找出改进的方法,并把失分点记在“错题本”上,力争做到对失分点日后“不二错”。解决月清问题(不要求月考,但要求章节过关)。
祝你愉快
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中的数学只是一个比较高的门槛。 这是一个老生常谈的问题,但是发现最近人教论坛中没有较全面的谈这个问题的帖子,所以就根据自己学习数学的经验写了这个,抛砖引玉,希望各位老师能够补充我漏掉的问题,改正这里面的错误,也希望大家发表一下自己的观点,充实一下这个帖子,对数学版的所有人都能有所帮助。 关于怎么学好数学 1、对数学的认识
数学实际上并不是一个非常神秘、至高无上的学科,他并不是上帝的旨意,数学也有它自己的历史,有它自己的发展。其中当然也有错误,有不足的地方,这正是现在数学家们所要做的工作。我去年看了一本书,叫《数学确定性的丧失》(第一推动系列的,其实说的是数学史的一部分),它让我认识到,数学跟物理一样,也是一种经验性的学科,只不过它比起它的学科更严谨一些罢了(我个人认为,数学和哲学是解决其他自然学科解决不了的问题的)。数学只是前人关于“某一方面“的智慧的集合,而我们正是在学习这些智慧,而不是僵死的算术,大家可以发去找一些数学科普方面的知识,从中找到一些自己感兴趣的内容来看,了解一下数学的发展,同时也须能得到一些灵感,甚至是兴趣。
2、兴趣
在高中学习任何学科都要有兴趣的支持才能学好,更何况作为主要门槛的数学呢?
但是从我周围的很多人来看,他们都知道兴趣得重要,但是却不会培养兴趣,也不去主观培养兴趣。
3、数学思想很重要
高中有几大数学思想:函数和方程思想,划归思想,转移与转化思想,极限思想等。
我认为这个思想是广义上的,不应只限于这五大思想,数学中每个学科都有各自的的思想,绝不止五个,高中的教学不应只限于这几个,而是应该让学生多见识一些其他的思想。我自认为稍微懂得了一些,但是因为水平不行,无法用语言表达(只可意会不可言传^_^)。我认为这个思想也应该是因人而异,每个人都有自己的思维特点,都有自己需要注意的地方,不应该千篇一律。
虽然思想很难把握,但是获取思想的途径还是有的:那就是积累,但这积累并不是题的积累,而是平时自己思考总结的积累。如你在做题时,自己的方法何其他人的方法不一样,这是就应该想,我的方法和它的有什么区别?谁的方法好?自己为什么没这么想?哪个方法计算量小?哪个的思维难度低?……再如,当你在学习或总结时,碰到一个数学知识
点很熟悉,象原来的某个知识点,这时就应该考虑一下,这几个知识点为什么像?他们有什么表面联系或实质联系?能不能放在一起理解?方法上能不能通用?……考虑完这些,就有用了,数学中那些跨分支的数学方法的借用(如根式计算中的三角换元)很多都是从这来的。当然应该像的地方还有很多,这就看大家自己的探索了。
数学中思考和总结是很重要的,思考的量从某种程度上决定的你的数学思想的好坏。 4、“数学感觉”
英语有语感,有时候你做题没有原因但就觉得某个答案像正确答案,很多时候实际上也正是如此,这就是语感。同样,数学中也有类似的东西,暂且称为“数学感觉”,我们看到题,没细想就有了一个思路,这大概就算“数学感觉”。“数学感觉”是纯经验的,可以积累的,这个积累就是做题的积累了,但是我并不主张使用这种方法,因为它易错,易忘,而且无法判断正确与否。但是在关键时刻可能会助你一臂之力。
事实上,不仅数学中有,理科中都有,理科整体也有。但是这个话题太大,我说不了,这就看大家自己悟了。 5、基本功
我这里说的基本功是广义上的基本功:
1、基本计算(准确,快速,这个是最难的,不信看看自己
因马虎而犯的错误)
2、多层讨论(这个比较麻烦) 3、字典排列法(就看你知不知道) (下面的就难了) 4、代数变形 5、因式分解 6、解方程
7、消参(包括消元) 8、解不等式,不等式证明
9、求递推数列通项(包括数列求和) 10、三角运算
11、平面几何计算和证明 12、函数求值域 13、向量
14、解简单不定方程及整数解 15、数学归纳法 16、复数计算 17、求导
大概就这些了。基本功是一个经验性的问题,需要平常的做题积累,总结一些小技巧,小方法是必要的,也是无止境的。但是不能在上面花过多的时间因为:除了前三项外这些基本功都达不到最好(因为无论你的基本功有多好,你总能遇到
不会的问题),但是这些基本功却不能太差,因为能否解决某些偏难怪的问题就靠这些基本功。
6、有创新精神,相信自己(给数学水平中等以上的人) 创新精神是数学发展的源泉,所以我们要学好数学,也必须有创新精神。创新精神有很多方面,比如说:你做题时感到某一个题的解法比较麻烦,可能有好的方法,自己可以尝试一下,看看自己能不能找到。这就是一种创新精神。但是创新精神有一个前提,就是你的数学水平不能太差。有创新精神就要敢于怀疑,比如说:高的微元法,它本身并不严密,这是你就可以想怎样才能使它严密呢?去参考一下数学分析,相信你会有很多收获的(这就要求你有一定的数学基础,这个基础可是比上一点中的基本功范围还广的。另外关于数学分析的话题以后还会再说。)。创新精神还可以在平时做题中发挥作用,比如说你做的某一个题有推广的价值,这是你就可以自己尝试把它推广一下,之后可以跟别人交流(这要求你有博大的胸怀,呵呵,夸张了),再重新思考自己的推广,看看有什么问题……
但是在我们创新的过程中总会碰到困难,我们应该怎么应对呢。
我认为,我们在开始的时候应该相信自己。自信是必要的。我在平常给别人讲题时,经常碰到这样的情况:一个同学把他的从头到尾给我说了一遍,我一路点头(有点像安装程序
时的一路回车),其他的没说一句话,他就满意的回去了。这种情况几乎占了50%。这实际上就是不相信自己,数学是很严密的学科,你既然推出来了,就不会有问题,但是如果你基础不好,推理不严密就另当别论了。
在探索过程中,也不能一味地相信自己,这容易跑进死胡同,浪费时间(呵呵,有风险才有利益)。这就要求我们在适当的时候停止,去咨询一下别人,查阅一下相关书籍,用前人的智慧丰富自己,同时节约自己的时间。
在探索的过程中,最重要的就是什么时候该坚持,什么时候该寻求帮助。这两个方面各有有点,不能一概而论,这就要靠大家自己来选择了。
7、扩展知识面(给数学有余力的同学)
对于数学学的较好的同学来说,高中的题虽然是无限的,但是思想是有限的,这些学生应该已经掌握了大部分的思想。但是高中剩下的时间还有很多,我们不能任凭以有的数学思想和数学头脑的荒废(做自己会的题从某种程度上来说是一种荒废),这就要求我们扩展知识面,获得新的思想,了解新的数学工具,来保持我们的数学头脑的活力。
我对数学有余力的同学的建议是,先在高中竞赛中找自己想看的东西看(注意是自己想看的,数学中的理论和方法多如牛毛,一个人一生都很难看完)。认为下面这几个内容大家应该了解一下:
同余、基础的组合计数、抽屉原理、容斥原理、基础的奇偶分析等(以后再补充)。
当然,竞赛中让人感兴趣的地方并不多,这里就推荐几个数学分支,大家可以参考一下: 数学分析:
我认为这是数学学的好的同学一定要看的书,虽然不要求看懂,但是一定要知道有这么回事,对导数和积分的意义和应用要有些了解,积分很有用的,大家看了就知道了。 微分方程:
这个分支完全是为物理准备的,大家有谁喜欢物理可以去翻一翻,但是需要先看数学分析。 线性代数:
主要有行列式和矩阵,我认为行列式大家应该了解一下,主要解决线性方程组问题。而矩阵在高中虽然没有什么用但是它是数学中唯一精确处理大量数据的数学工具(至少我是这么认为的,我看以后的数学绝对要在处理大量数据上有较大的发展)。 组合计数:
这个东西比较有趣,但是涉及面也比较广,要求有比较宽的数学知识面。其中应用置换群解决对称问题(比如说空间圆排列,甚至是更复杂的问题)的方法我很喜欢,大家如果有兴趣也可以看一下。
图论:
我不得不承认,图论是最需要脑力的数学分支(我现在看的这几个数学分支中),虽然它只用加减乘除和矩阵,但是却比较难看懂,是练习思维的最好工具。
数学实际上并不是一个非常神秘、至高无上的学科,他并不是上帝的旨意,数学也有它自己的历史,有它自己的发展。其中当然也有错误,有不足的地方,这正是现在数学家们所要做的工作。我去年看了一本书,叫《数学确定性的丧失》(第一推动系列的,其实说的是数学史的一部分),它让我认识到,数学跟物理一样,也是一种经验性的学科,只不过它比起它的学科更严谨一些罢了(我个人认为,数学和哲学是解决其他自然学科解决不了的问题的)。数学只是前人关于“某一方面“的智慧的集合,而我们正是在学习这些智慧,而不是僵死的算术,大家可以发去找一些数学科普方面的知识,从中找到一些自己感兴趣的内容来看,了解一下数学的发展,同时也须能得到一些灵感,甚至是兴趣。
2、兴趣
在高中学习任何学科都要有兴趣的支持才能学好,更何况作为主要门槛的数学呢?
但是从我周围的很多人来看,他们都知道兴趣得重要,但是却不会培养兴趣,也不去主观培养兴趣。
3、数学思想很重要
高中有几大数学思想:函数和方程思想,划归思想,转移与转化思想,极限思想等。
我认为这个思想是广义上的,不应只限于这五大思想,数学中每个学科都有各自的的思想,绝不止五个,高中的教学不应只限于这几个,而是应该让学生多见识一些其他的思想。我自认为稍微懂得了一些,但是因为水平不行,无法用语言表达(只可意会不可言传^_^)。我认为这个思想也应该是因人而异,每个人都有自己的思维特点,都有自己需要注意的地方,不应该千篇一律。
虽然思想很难把握,但是获取思想的途径还是有的:那就是积累,但这积累并不是题的积累,而是平时自己思考总结的积累。如你在做题时,自己的方法何其他人的方法不一样,这是就应该想,我的方法和它的有什么区别?谁的方法好?自己为什么没这么想?哪个方法计算量小?哪个的思维难度低?……再如,当你在学习或总结时,碰到一个数学知识
点很熟悉,象原来的某个知识点,这时就应该考虑一下,这几个知识点为什么像?他们有什么表面联系或实质联系?能不能放在一起理解?方法上能不能通用?……考虑完这些,就有用了,数学中那些跨分支的数学方法的借用(如根式计算中的三角换元)很多都是从这来的。当然应该像的地方还有很多,这就看大家自己的探索了。
数学中思考和总结是很重要的,思考的量从某种程度上决定的你的数学思想的好坏。 4、“数学感觉”
英语有语感,有时候你做题没有原因但就觉得某个答案像正确答案,很多时候实际上也正是如此,这就是语感。同样,数学中也有类似的东西,暂且称为“数学感觉”,我们看到题,没细想就有了一个思路,这大概就算“数学感觉”。“数学感觉”是纯经验的,可以积累的,这个积累就是做题的积累了,但是我并不主张使用这种方法,因为它易错,易忘,而且无法判断正确与否。但是在关键时刻可能会助你一臂之力。
事实上,不仅数学中有,理科中都有,理科整体也有。但是这个话题太大,我说不了,这就看大家自己悟了。 5、基本功
我这里说的基本功是广义上的基本功:
1、基本计算(准确,快速,这个是最难的,不信看看自己
因马虎而犯的错误)
2、多层讨论(这个比较麻烦) 3、字典排列法(就看你知不知道) (下面的就难了) 4、代数变形 5、因式分解 6、解方程
7、消参(包括消元) 8、解不等式,不等式证明
9、求递推数列通项(包括数列求和) 10、三角运算
11、平面几何计算和证明 12、函数求值域 13、向量
14、解简单不定方程及整数解 15、数学归纳法 16、复数计算 17、求导
大概就这些了。基本功是一个经验性的问题,需要平常的做题积累,总结一些小技巧,小方法是必要的,也是无止境的。但是不能在上面花过多的时间因为:除了前三项外这些基本功都达不到最好(因为无论你的基本功有多好,你总能遇到
不会的问题),但是这些基本功却不能太差,因为能否解决某些偏难怪的问题就靠这些基本功。
6、有创新精神,相信自己(给数学水平中等以上的人) 创新精神是数学发展的源泉,所以我们要学好数学,也必须有创新精神。创新精神有很多方面,比如说:你做题时感到某一个题的解法比较麻烦,可能有好的方法,自己可以尝试一下,看看自己能不能找到。这就是一种创新精神。但是创新精神有一个前提,就是你的数学水平不能太差。有创新精神就要敢于怀疑,比如说:高的微元法,它本身并不严密,这是你就可以想怎样才能使它严密呢?去参考一下数学分析,相信你会有很多收获的(这就要求你有一定的数学基础,这个基础可是比上一点中的基本功范围还广的。另外关于数学分析的话题以后还会再说。)。创新精神还可以在平时做题中发挥作用,比如说你做的某一个题有推广的价值,这是你就可以自己尝试把它推广一下,之后可以跟别人交流(这要求你有博大的胸怀,呵呵,夸张了),再重新思考自己的推广,看看有什么问题……
但是在我们创新的过程中总会碰到困难,我们应该怎么应对呢。
我认为,我们在开始的时候应该相信自己。自信是必要的。我在平常给别人讲题时,经常碰到这样的情况:一个同学把他的从头到尾给我说了一遍,我一路点头(有点像安装程序
时的一路回车),其他的没说一句话,他就满意的回去了。这种情况几乎占了50%。这实际上就是不相信自己,数学是很严密的学科,你既然推出来了,就不会有问题,但是如果你基础不好,推理不严密就另当别论了。
在探索过程中,也不能一味地相信自己,这容易跑进死胡同,浪费时间(呵呵,有风险才有利益)。这就要求我们在适当的时候停止,去咨询一下别人,查阅一下相关书籍,用前人的智慧丰富自己,同时节约自己的时间。
在探索的过程中,最重要的就是什么时候该坚持,什么时候该寻求帮助。这两个方面各有有点,不能一概而论,这就要靠大家自己来选择了。
7、扩展知识面(给数学有余力的同学)
对于数学学的较好的同学来说,高中的题虽然是无限的,但是思想是有限的,这些学生应该已经掌握了大部分的思想。但是高中剩下的时间还有很多,我们不能任凭以有的数学思想和数学头脑的荒废(做自己会的题从某种程度上来说是一种荒废),这就要求我们扩展知识面,获得新的思想,了解新的数学工具,来保持我们的数学头脑的活力。
我对数学有余力的同学的建议是,先在高中竞赛中找自己想看的东西看(注意是自己想看的,数学中的理论和方法多如牛毛,一个人一生都很难看完)。认为下面这几个内容大家应该了解一下:
同余、基础的组合计数、抽屉原理、容斥原理、基础的奇偶分析等(以后再补充)。
当然,竞赛中让人感兴趣的地方并不多,这里就推荐几个数学分支,大家可以参考一下: 数学分析:
我认为这是数学学的好的同学一定要看的书,虽然不要求看懂,但是一定要知道有这么回事,对导数和积分的意义和应用要有些了解,积分很有用的,大家看了就知道了。 微分方程:
这个分支完全是为物理准备的,大家有谁喜欢物理可以去翻一翻,但是需要先看数学分析。 线性代数:
主要有行列式和矩阵,我认为行列式大家应该了解一下,主要解决线性方程组问题。而矩阵在高中虽然没有什么用但是它是数学中唯一精确处理大量数据的数学工具(至少我是这么认为的,我看以后的数学绝对要在处理大量数据上有较大的发展)。 组合计数:
这个东西比较有趣,但是涉及面也比较广,要求有比较宽的数学知识面。其中应用置换群解决对称问题(比如说空间圆排列,甚至是更复杂的问题)的方法我很喜欢,大家如果有兴趣也可以看一下。
图论:
我不得不承认,图论是最需要脑力的数学分支(我现在看的这几个数学分支中),虽然它只用加减乘除和矩阵,但是却比较难看懂,是练习思维的最好工具。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学一很好的兴趣
简单说说数学吧,数学确实不简单,随便拿出一道题,便能难倒很多很多人,谁都没把握数学每次都考满分。
的确但是高考数学一般不会太难的,说下我的心得吧。
首先,选择。这个要速度解决。怎么解决?各种方法。
12道选择,我一般5-8分钟搞定。前面4道,小心加小心的做,简单但易错,建议每题至少半分钟。
5-12小题,中等难度,难度高了,但技巧也来了,技巧虽然很流气,但却能保证百分百正确,随便举个例子哈(因为例子太多太多了),题目说,空间中两条相交直线等等的,在这个情况下做题,嗯,嗯,你就可以怎么做类?流氓做法,默认为这两条直线是XY轴,嘿嘿,条件强了那么多,本来很难的题,结果几秒钟秒杀,而且绝对正确。
要记住,题目出的往往是“一般情况”,因为一般情况有难度,有挑战,但是,既然“一般情况都成立”,特殊情况岂不更成立?
比如说,他说数列An怎么样的,你就把An=n处理得了,多简单。
要记住,用动脑经、应该花时间的,在填空和解答题上!过度的在选择上浪费时间就OVER了!
要用最直接
填空题,技巧和选择差不多,但4道填空题建议7分钟左右解决,一定要小心,题简单,但很容易出错。
容易出错的地方,一定要慢下来,静下心来,不要骄傲的做。
不要以为题简单就觉得自己牛逼,自己差的就是在这个地方,不要说自己马虎,错了就是不会
一个点一个点的往下来,并且不断的回忆之前的点,反复轮回至少5编,那么,恭喜,你数学、理综基本知识绝对没问题了。
但是对于高一高二,你们就要在方法上加强,强化基础的前提下多做、并且重复、有秩序的做
题。
只是嘴上说着小心小心小心是没用的,试问,谁不想小心?谁想马虎?这靠精神是阻止不了的,只能靠训练!
我
说过,拿出以前做过的套卷,以最短的时间最高的正确率一遍遍的磨练。
100%的正确率就是这么炼出来的,而不是说出来的。
其实数学不用怕的
简单说说数学吧,数学确实不简单,随便拿出一道题,便能难倒很多很多人,谁都没把握数学每次都考满分。
的确但是高考数学一般不会太难的,说下我的心得吧。
首先,选择。这个要速度解决。怎么解决?各种方法。
12道选择,我一般5-8分钟搞定。前面4道,小心加小心的做,简单但易错,建议每题至少半分钟。
5-12小题,中等难度,难度高了,但技巧也来了,技巧虽然很流气,但却能保证百分百正确,随便举个例子哈(因为例子太多太多了),题目说,空间中两条相交直线等等的,在这个情况下做题,嗯,嗯,你就可以怎么做类?流氓做法,默认为这两条直线是XY轴,嘿嘿,条件强了那么多,本来很难的题,结果几秒钟秒杀,而且绝对正确。
要记住,题目出的往往是“一般情况”,因为一般情况有难度,有挑战,但是,既然“一般情况都成立”,特殊情况岂不更成立?
比如说,他说数列An怎么样的,你就把An=n处理得了,多简单。
要记住,用动脑经、应该花时间的,在填空和解答题上!过度的在选择上浪费时间就OVER了!
要用最直接
填空题,技巧和选择差不多,但4道填空题建议7分钟左右解决,一定要小心,题简单,但很容易出错。
容易出错的地方,一定要慢下来,静下心来,不要骄傲的做。
不要以为题简单就觉得自己牛逼,自己差的就是在这个地方,不要说自己马虎,错了就是不会
一个点一个点的往下来,并且不断的回忆之前的点,反复轮回至少5编,那么,恭喜,你数学、理综基本知识绝对没问题了。
但是对于高一高二,你们就要在方法上加强,强化基础的前提下多做、并且重复、有秩序的做
题。
只是嘴上说着小心小心小心是没用的,试问,谁不想小心?谁想马虎?这靠精神是阻止不了的,只能靠训练!
我
说过,拿出以前做过的套卷,以最短的时间最高的正确率一遍遍的磨练。
100%的正确率就是这么炼出来的,而不是说出来的。
其实数学不用怕的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-05-11
展开全部
高中跟初中不同,高中的知识点很多,而且延伸也很多。不能松懈。我高中数学学的还不错。总是一百三十五以上。大多都是马虎大意的失分。我的方法也很简单。希望对你有帮助。
首先,我总是把书的概念弄得很熟,而且充分理解。比如,高一主要是函数,函数是基础。函数概念,奇偶性,初等函数等。
第二,书上的例题我很重视,总是研究。例题都是出示了基本的应用方法和解题思维。主要看思维和方法,若有条件可以跟个辅导班去学,拓展自身的学习思维,我就是这么过来的,可以参考下bai/http://zhidao.newace.cn/a/1.html
第三,做习题。数学习题的练习是不可少的。但是也不要啥题都做,会做很多无用功。做书上的习题,高考题型等,一般都出题很规范。从易到难。
第四,要学会独立思考。不要事事去问别人。不要总看答案会形成依赖。多思考,有自己的思考体系很重要。也会锻炼大脑。
第五 那里不会练那里。
针对题型,针对知识点,不会的地方进行专项练习。现在有个词叫刻意练习。说的就是这个
首先,我总是把书的概念弄得很熟,而且充分理解。比如,高一主要是函数,函数是基础。函数概念,奇偶性,初等函数等。
第二,书上的例题我很重视,总是研究。例题都是出示了基本的应用方法和解题思维。主要看思维和方法,若有条件可以跟个辅导班去学,拓展自身的学习思维,我就是这么过来的,可以参考下bai/http://zhidao.newace.cn/a/1.html
第三,做习题。数学习题的练习是不可少的。但是也不要啥题都做,会做很多无用功。做书上的习题,高考题型等,一般都出题很规范。从易到难。
第四,要学会独立思考。不要事事去问别人。不要总看答案会形成依赖。多思考,有自己的思考体系很重要。也会锻炼大脑。
第五 那里不会练那里。
针对题型,针对知识点,不会的地方进行专项练习。现在有个词叫刻意练习。说的就是这个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询