![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知二次函数f(x)=x²+mx+1(m属于Z),且关于x的方程f(x)=2在区间(-3,1/2)内有两个不同的实根。
2)m=2若对一切x∈【-1/2,1/2】,不等式f(x+t)<f(x/2)恒成立,求实数t的取值范围...
2)m=2 若对一切x∈【-1/2,1/2】,不等式f(x+t)<f(x/2)恒成立,求实数t的取值范围
展开
1个回答
展开全部
当m=2时,f(x)=x²+2x+1
因为,f(x+t)<f(x/2)
所以,(x+t)²+2(x+t)+1<(x/2)²+2(x/2)+1
整理得,3x²+4(2t+1)x+4t²+8t<0
若对一切x∈[-1/2,1/2],不等式恒成立,则
3×(-1/2)²+4(2t+1)×(-1/2)+4t²+8t<0,整理得16t²+16t-5<0①
3×(1/2)²+4(2t+1)×(1/2)+4t²+8t<0,整理得16t²+48t+11<0②
①②联立不等式组,解得-5/4<t<-1/4.
因为,f(x+t)<f(x/2)
所以,(x+t)²+2(x+t)+1<(x/2)²+2(x/2)+1
整理得,3x²+4(2t+1)x+4t²+8t<0
若对一切x∈[-1/2,1/2],不等式恒成立,则
3×(-1/2)²+4(2t+1)×(-1/2)+4t²+8t<0,整理得16t²+16t-5<0①
3×(1/2)²+4(2t+1)×(1/2)+4t²+8t<0,整理得16t²+48t+11<0②
①②联立不等式组,解得-5/4<t<-1/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询