菱形ABCD中E在BC上,且AB=AE,角BAE=1/2角EAD,AE交BD于M.试说明BE=AM

 我来答
匿名用户
推荐于2016-12-02
展开全部
证明:
∵AB=AE
∴∠ABE=∠AEB
∴四边形ABCD是菱形
∴∠ABE=2∠ABM(菱形对角线平分对角)
BC//AD
∴∠EAD=∠AEB=∠ABE
∵∠EAD=2∠BAE
∴∠ABM=∠BAE
∴AM=BM
∵∠BME=∠ABM+∠BAE=2∠BAE=∠AEB
∴BM=BE
∴AM=BE
追问
谢谢
匿名用户
2014-07-10
展开全部
晚了一步
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-07-10
展开全部
这应该是空间集合吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式