4个回答
展开全部
m^x 这是指数函数 x取任意实数 分母不为0 ,而指数函数值域大于0 故定义域为任意实数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=(mx-1)/(mx+1) (m>0,且m≠1)
(1)函数f(X)的定义域(-∞,-1/m)∪(-1/m,+∞)
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
值域(-∞,1)∪(1,+∞)
(2)判断f(x)的
f(-x)≠f(x)
f(-x)≠-f(x)
非奇非偶
(3)m>0,
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
m>0
所以在(-∞,-1/m),(-1/m,+∞)都是单调减函数
(1)函数f(X)的定义域(-∞,-1/m)∪(-1/m,+∞)
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
值域(-∞,1)∪(1,+∞)
(2)判断f(x)的
f(-x)≠f(x)
f(-x)≠-f(x)
非奇非偶
(3)m>0,
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
m>0
所以在(-∞,-1/m),(-1/m,+∞)都是单调减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=(mx-1)/(mx+1) (m>0,且m≠1)
(1)函数f(X)的定义域(-∞,-1/m)∪(-1/m,+∞)
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
值域(-∞,1)∪(1,+∞)
(2)判断f(x)的
f(-x)≠f(x)
f(-x)≠-f(x)
非奇非偶
(3)m>0,
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
m>0
所以在(-∞,-1/m),(-1/m,+∞)都是单调减函数
希望对你有帮助,祝你学习进步,更上一层楼! (*^__^*)
(1)函数f(X)的定义域(-∞,-1/m)∪(-1/m,+∞)
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
值域(-∞,1)∪(1,+∞)
(2)判断f(x)的
f(-x)≠f(x)
f(-x)≠-f(x)
非奇非偶
(3)m>0,
f(x)=(mx-1)/(mx+1) =1+(-2/m)/(x+1/m)
m>0
所以在(-∞,-1/m),(-1/m,+∞)都是单调减函数
希望对你有帮助,祝你学习进步,更上一层楼! (*^__^*)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询