阅读下列解题过程已知abc为△ABC的三边,且满足a²c²–b²c²=a4-b4
已知a,b,c为△ABC的三边,且满足a²c²-b²c²=a4-b4.试判断△ABC的形状。
a²c²-b²c²=a4-b4
(a²-b²)c²-(a²-b²)(a²+b²)=0
(a²-b²)(c²-a²-b²)=0
∴a²=b²或c²-a²-b²=0
∴a=b或a²+b²=c²
∴△ABC是等腰三角形或直角三角形。
扩展资料:
三角形按边分
1、不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。
2、等腰三角形;等腰三角形(isosceles triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。
等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
等腰三角形中腰的平方等于高的平方加底的一半的平方。等腰三角形的腰与它的高的关系,直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。
3、等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
参考资料:百度百科-三角形
推荐于2018-04-20
a²c²-b²c²=a4-b4
(a²-b²)c²-(a²-b²)(a²+b²)=0
(a²-b²)(c²-a²-b²)=0
∴a²=b²或c²-a²-b²=0
∴a=b或a²+b²=c²
∴△ABC是等腰三角形或直角三角形
(ⅰ)③;
(ⅱ)忽略了a2-b2=0的可能;
(ⅲ)接第③步:
∵c2(a2-b2)=(a2-b2)(a2+b2),
∴c2(a2-b2)-(a2-b2)(a2+b2)=0,
∴(a2-b2)[c2-(a2+b2)]=0,
∴a2-b2=0或c2-(a2+b2)=0.故a=b或c2=a2+b2,
∴△ABC是等腰三角形或直角三角形或等腰直角三角形