在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段A
在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段...
在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=______时,AQ=2BD.
展开
1个回答
展开全部
(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,
∴∠DAP=∠CBP,
在△ACQ和△BCP中
,
∴△ACQ≌△BCP(ASA),
∴BP=AQ;
(2)解:如图2所示:
∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中
,
∴△AQC≌△BPC(ASA),
∴QC=CP,
∵∠QCD=90°,
∴∠CQP=∠CPQ=45°;
(3)解:当∠DBA=∠P时,AQ=2BD;
∵∠DBA=∠P,
∴AP=AB,
∵AD⊥BP,
∴AD=DP,
∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,
∴∠P=∠Q,
在△ACQ和△BCP中
,
∴△ACQ≌△BCP(ASA),
∴BP=AQ,
∴此时AQ=BP=2BD.
故答案为:∠P.
∴∠DAP=∠CBP,
在△ACQ和△BCP中
|
∴△ACQ≌△BCP(ASA),
∴BP=AQ;
(2)解:如图2所示:
∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中
|
∴△AQC≌△BPC(ASA),
∴QC=CP,
∵∠QCD=90°,
∴∠CQP=∠CPQ=45°;
(3)解:当∠DBA=∠P时,AQ=2BD;
∵∠DBA=∠P,
∴AP=AB,
∵AD⊥BP,
∴AD=DP,
∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,
∴∠P=∠Q,
在△ACQ和△BCP中
|
∴△ACQ≌△BCP(ASA),
∴BP=AQ,
∴此时AQ=BP=2BD.
故答案为:∠P.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询