在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段A

在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段... 在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=______时,AQ=2BD. 展开
 我来答
粒娃与丶人2116
推荐于2017-09-16 · TA获得超过336个赞
知道答主
回答量:200
采纳率:100%
帮助的人:70.2万
展开全部
(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,
∴∠DAP=∠CBP,
在△ACQ和△BCP中
∠QCA=∠PCB
CA=CB
∠CAQ=∠CBP

∴△ACQ≌△BCP(ASA),
∴BP=AQ;

(2)解:如图2所示:
∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中
∠ACQ=∠BCP
CA=CB
∠CAQ=∠CBP

∴△AQC≌△BPC(ASA),
∴QC=CP,
∵∠QCD=90°,
∴∠CQP=∠CPQ=45°;

(3)解:当∠DBA=∠P时,AQ=2BD;
∵∠DBA=∠P,
∴AP=AB,
∵AD⊥BP,
∴AD=DP,
∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,
∴∠P=∠Q,
在△ACQ和△BCP中
∠QCA=∠PCB
CA=CB
∠Q=∠P

∴△ACQ≌△BCP(ASA),
∴BP=AQ,
∴此时AQ=BP=2BD.
故答案为:∠P.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式