下列命题:(一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数))①若a+b+c=0,则b2-4ac≥0;②若b>a+c,

下列命题:(一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数))①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个... 下列命题:(一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数))①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;其中不正确的有(  )A.1个B.2个C.3个D.0个 展开
 我来答
艺吧顶贴组小秿
推荐于2016-02-22 · 超过63用户采纳过TA的回答
知道答主
回答量:125
采纳率:100%
帮助的人:53万
展开全部
(1)∵a+b+c=0,得b=-(a+c),
∴b2-4ac=(a+c)2-4ac=(a-c)2≥0,所以①对;
(2)若取a=-1,b=2,c=-3,满足b>a+c,但是△=b2-4ac=22-4×(-1)×(-3)=-8<0,即一元二次方程ax2+bx+c=0没有实数根,
所以②错;
(3)∵b=2a+3c,
∴△=b2-4ac=(2a+3c)2-4ac=4(a+c)2+5c2
因为a≠0,所以当c=0,△=4(a+c)2+5c2>0;
当c≠0,△=4(a+c)2+5c2>0,即一元二次方程ax2+bx+c=0总有两个不相等的实数根,所以③对.
故选A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式