(2010?通州区一模)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证

(2010?通州区一模)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证:(Ⅰ)EF∥平面PAB;(Ⅱ)平面PAD⊥平面P... (2010?通州区一模)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证:(Ⅰ)EF∥平面PAB;(Ⅱ)平面PAD⊥平面PDC. 展开
 我来答
汝红荷2228
推荐于2016-12-01 · 超过55用户采纳过TA的回答
知道答主
回答量:104
采纳率:0%
帮助的人:131万
展开全部
解答:证明:(Ⅰ)∵E、F分别是PC、PD的中点,
∴EF∥CD.                    (2分)
∵底面ABCD是矩形,
∴CD∥AB.
∴EF∥AB.                  (4分)
又AB?平面PAB,EF?平面PAB,
∴EF∥平面PAB.               (7分)
(Ⅱ)∵PA⊥底面ABCD,CD?底面ABCD
∴PA⊥CD.                    (8分)
∵底面ABCD是矩形,AD⊥CD.                                                          (10分)
又PA∩AD=A,AP?面PAD,AD?面PAD,
∴DC⊥平面PAD.                                                   (12分)
∵DC?平面PDC,
∴平面PAD⊥平面PDC.                                                   (14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式