数学求定积分
1个回答
展开全部
∫(0,π/2) cos^nxdx
=∫(0,π/2) cos^(n-1)x*cosxdx
=∫(0,π/2) cos^(n-1)xd(sinx)
=cos^(n-1)xsinx|(0,π/2)+∫(0,π/2) (n-1)sin^2xcos^(n-2)xdx
=(n-1)*∫(0,π/2) (1-cos^2x)cos^(n-2)xdx
=(n-1)*∫(0,π/2) cos^(n-2)xdx-(n-1)*∫(0,π/2) cos^nxdx
所以∫(0,π/2) cos^nxdx=(n-1)/n*∫(0,π/2) cos^(n-2)xdx
原式=∫(0,π/2) cos^8xdx
=7/8*5/6*3/4*∫(0,π/2) cos^2xdx
=35/64*1/2*∫(0,π/2) (1+cos2x) dx
=35/128*(x+1/2*sin2x)|(0,π/2)
=35/128*(π/2)
=35π/256
=∫(0,π/2) cos^(n-1)x*cosxdx
=∫(0,π/2) cos^(n-1)xd(sinx)
=cos^(n-1)xsinx|(0,π/2)+∫(0,π/2) (n-1)sin^2xcos^(n-2)xdx
=(n-1)*∫(0,π/2) (1-cos^2x)cos^(n-2)xdx
=(n-1)*∫(0,π/2) cos^(n-2)xdx-(n-1)*∫(0,π/2) cos^nxdx
所以∫(0,π/2) cos^nxdx=(n-1)/n*∫(0,π/2) cos^(n-2)xdx
原式=∫(0,π/2) cos^8xdx
=7/8*5/6*3/4*∫(0,π/2) cos^2xdx
=35/64*1/2*∫(0,π/2) (1+cos2x) dx
=35/128*(x+1/2*sin2x)|(0,π/2)
=35/128*(π/2)
=35π/256
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询