如图,已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形
如图,已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如...
如图,已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在BC边上时,求证:MF=NE.(2)若点M在点B左侧,其他条件不变时,请你在图②中作出相应的图形(不写作法),MF与NE相等的结论是否仍然成立?请直接写出结论,不必证明或说明理由.(3)请你利用(2)中所作出的图形来判断点F是否在直线NE上?并说明理由.
展开
1个回答
展开全部
(1)证明:连接DE,DF,EF.(1分)
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵DE,DF,EF为三角形的中位线.
∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.(3分)
又∵DM=DN,
∴△DMF≌△DNE.(4分)
∴MF=NE.(5分)
(2)画出图形(如答图).(7分)
MF与NE相等的结论仍然成立.(8分)
(3)点F在直线NE上.(9分)
连接DF,NF,EF.
由(1),知DF=
AC=
AB=DB.
又∠BDM+∠BDN=60°,∠NDF+∠BDN=60°,
∴∠BDM=∠NDF,
又∵DM=DN,
∴△DBM≌△DFN.(10分)
∴∠DFN=∠DBM=120°.
又∵∠DFE=60°.
∴∠NFE=∠DFN+∠DFE=180°.(11分)
可得点F在NE上.(12分)
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵DE,DF,EF为三角形的中位线.
∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.(3分)
又∵DM=DN,
∴△DMF≌△DNE.(4分)
∴MF=NE.(5分)
(2)画出图形(如答图).(7分)
MF与NE相等的结论仍然成立.(8分)
(3)点F在直线NE上.(9分)
连接DF,NF,EF.
由(1),知DF=
1 |
2 |
1 |
2 |
又∠BDM+∠BDN=60°,∠NDF+∠BDN=60°,
∴∠BDM=∠NDF,
又∵DM=DN,
∴△DBM≌△DFN.(10分)
∴∠DFN=∠DBM=120°.
又∵∠DFE=60°.
∴∠NFE=∠DFN+∠DFE=180°.(11分)
可得点F在NE上.(12分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询