如图1,点C是线段AB上一动点,分别以线段AC、CB为边,在线段AB的同侧作正方形ACDE和等腰直角三角形BCF,

如图1,点C是线段AB上一动点,分别以线段AC、CB为边,在线段AB的同侧作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,连接AF、BD.(1)猜想线段AF与线... 如图1,点C是线段AB上一动点,分别以线段AC、CB为边,在线段AB的同侧作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,连接AF、BD.(1)猜想线段AF与线段BD的数量关系和位置关系(不用证明).(2)当点C在线段AB上方时,其它条件不变,如图2,(1)中的结论是否成立?说明你的理由.(3)在图1的条件下,探究:当点C在线段AB上运动到什么位置时,直线AF垂直平分线段BD? 展开
 我来答
最爱明朝571
推荐于2016-08-31 · TA获得超过158个赞
知道答主
回答量:123
采纳率:100%
帮助的人:65.7万
展开全部
解答:解:(1)如图a,延长AF到DE于点M,
在△ACF和△DCB中,
AC=CD
∠ACF=∠ECD
FC=BC

∴△ACF≌△DCB(SAS),
∴AF=BD,∠CAF=∠CDE,
∵∠AFC=∠DFM,∠AFC+∠FAC=90°,
∴∠DFM+∠FDM=90°,
∴AF⊥BD.

(2)答:(1)中的结论仍成立,即AF=BD,AF⊥BD.
理由:如图1,
∵四边形ACDE为正方形,∴∠DCA=90°,AC=CD.
∵∠BCF=90°,CF=BC,∴∠DCA=∠BCF=90°,
∴∠DCA+∠DCF=∠BCF+∠DCF,
即∠ACF=∠DCB,
在△ACF和△DCB中,
DC=AC
∠ACB=∠BCD
BC=FC

∴△ACF≌△DCB(SAS),
∴AF=BD,∠CAF=∠CDB.
又∵∠1=∠2,∠CAF+∠1=90°,∴∠CDB+∠2=90°,
∴AF⊥BD.

(3)探究:当AC=
2
2
AB时,直线AF垂直平分线段BD.
如图2,连接AD,则AD=
2
AC.
∵直线AF垂直平分线段BD,∴AB=AD=
2
AC,
∴AC=
2
2
AB.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式