(2012?湖北模拟)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.(Ⅰ

(2012?湖北模拟)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.(Ⅰ)求证:AD⊥平面PQB;(Ⅱ)点M在... (2012?湖北模拟)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.(Ⅰ)求证:AD⊥平面PQB;(Ⅱ)点M在线段PC上,PM=tPC,试确定t的值,使PA∥平面MQB;(Ⅲ)若PA∥平面MQB,平面PAD⊥平面ABCD,求二面角M-BQ-C的大小. 展开
 我来答
及依白3J
2014-10-16 · TA获得超过139个赞
知道答主
回答量:135
采纳率:50%
帮助的人:70.7万
展开全部
(Ⅰ)证明:连接BD.
因为四边形ABCD为菱形,∠BAD=60°,所以△ABD为正三角形.
又Q为AD中点,所以AD⊥BQ.
因为PA=PD,Q为AD的中点,所以AD⊥PQ.
又BQ∩PQ=Q,所以AD⊥平面PQB.
(Ⅱ)解:当t=
1
3
时,PA∥平面MQB.
下面证明:连接AC交BQ于N,连接MN.
因为AQ∥BC,所以
AN
NC
AQ
BC
1
2

因为PA∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,
所以MN∥PA,
所以
PM
MC
AN
NC
1
2
,所以PM=
1
3
PC
,即t=
1
3
. (9分)
(Ⅲ)解:因为PQ⊥AD,平面PAD⊥平面ABCD,交线为AD,所以PQ⊥平面ABCD.
以Q为坐标原点,分别以QA,QB,QP所在的直线为x,y,z轴,建立如图所示的空间直角坐标系Q-xyz.
由PA=PD=AD=2,则有A(1,0,0),B(0,
3
,0)
P(0,0,
3
)

设平面MQB的法向量为
n
=(x,y,z),由
PA
=(1,0,?
3
)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消